Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries

dc.contributor.authorMu, Len_AU
dc.contributor.authorKan, WHen_AU
dc.contributor.authorKuai, Cen_AU
dc.contributor.authorYang, Zen_AU
dc.contributor.authorLi, LXen_AU
dc.contributor.authorSun, CJen_AU
dc.contributor.authorSainio, Sen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorNordlund, Den_AU
dc.contributor.authorLin, Fen_AU
dc.date.accessioned2021-02-04T00:58:28Zen_AU
dc.date.available2021-02-04T00:58:28Zen_AU
dc.date.issued2020-03-04en_AU
dc.date.statistics2021-01-23en_AU
dc.description.abstractDoping chemistry has been regarded as an efficient strategy to overcome some fundamental challenges facing the “no-cobalt” LiNiO2 cathode materials. By utilizing the doping chemistry, we evaluate the battery performance and structural/chemical reversibility of a new no-cobalt cathode material (Mg/Mn-LiNiO2). The unique dual dopants drive Mg and Mn to occupy the Li site and Ni site, respectively. The Mg/Mn-LiNiO2 cathode delivers smooth voltage profiles, enhanced structural stability, elevated self-discharge resistance, and inhibited nickel dissolution. As a result, the Mg/Mn-LiNiO2 cathode enables improved cycling stability in lithium metal batteries with the conventional carbonate electrolyte: 80% capacity retention after 350 cycles at C/3, and 67% capacity retention after 500 cycles at 2C (22 °C). We then take the Mg/Mn-LiNiO2 as the platform to investigate the local structural and chemical reversibility, where we identify that the irreversibility takes place starting from the very first cycle. The highly reactive surface induces the surface oxygen loss, metal reduction reaching the subsurface, and metal dissolution. Our data demonstrate that the dual dopants can, to some degree, mitigate the irreversibility and improve the cycling stability of LiNiO2, but more efforts are needed to eliminate the key challenges of these materials for battery operation in the conventional carbonate electrolyte. © 2020 American Chemical Societyen_AU
dc.identifier.citationMu, L., Kan, W. H., Kuai, C., Yang, Z., Li, L., Sun, C.-J., Sainio, S., Avdeev, M., Nordlund, D., & Lin, F. (2020). Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Applied Materials & Interfaces, 12(11), 12874–12882. doi:10.1021/acsami.0c00111en_AU
dc.identifier.issn1944-8252en_AU
dc.identifier.issue11en_AU
dc.identifier.journaltitleACS Applied Materials & Interfacesen_AU
dc.identifier.pagination12874-12882en_AU
dc.identifier.urihttps://doi.org/10.1021/acsami.0c00111en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10310en_AU
dc.identifier.volume12en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectMetalsen_AU
dc.subjectTransistion elementsen_AU
dc.subjectElectrodesen_AU
dc.subjectCathodesen_AU
dc.subjectDissolutionen_AU
dc.subjectDoped materialsen_AU
dc.subjectRadioisotope batteriesen_AU
dc.titleStructural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections