Atomistic characterisation of graphite oxidation and thermal decomposition mechanism under isothermal and non-isothermal heating scheme

dc.contributor.authorCordeiro, IMDCen_AU
dc.contributor.authorYuen, ACYen_AU
dc.contributor.authorWang, Wen_AU
dc.contributor.authorYang, Wen_AU
dc.contributor.authorChan, QNen_AU
dc.contributor.authorYeoh, GHen_AU
dc.date.accessioned2023-01-31T01:50:43Zen_AU
dc.date.available2023-01-31T01:50:43Zen_AU
dc.date.issued2022-07en_AU
dc.date.statistics2022-05-26en_AU
dc.description.abstractThe oxidation of graphene-based material (i.e. graphite, graphene) is a reaction of immense importance owing to its extensive industrial application (i.e. nanocomposites, flame retardants, energy storage). Although immense experimental works were carried out for identifying the thermal degradation and oxidation process of graphene, they generally lack atomistic-level observation of the surface reactions, thermal formation pathways from solid to product volatiles and structural evolutions during oxidation. To analyse the favourable properties of graphene from its carbon-chain molecular structure viewpoint, it is essential to investigate graphene-based materials at an atomic level. This study bridges the missing knowledge by performing quantitative reactive forcefield coupled molecular dynamics simulation (MD-ReaxFF) to determine the oxidation kinetics of graphite under computational characterisation schemes with temperatures ranging from 4000 K to 6000 K. The kinetics parameters (i.e. activation energy) were extracted through proposed numerical characterisation methods and demonstrated good agreement with the thermogravimetric analysis experiments and other literature. Activation energy at 193.84 kJ/mol and 224.26 kJ/mol were extracted under the isothermal scheme by two distinct characterisation methods, achieving an average relative error of 11.3 % and 2.5 % compared to the experiment data, which is 218.60 kJ/mol. In comparison, the non-isothermal simulations yielded 214.53 kJ/mol, with a significant improvement on the average relative error of 1.86 %. © 2022 Elsevier B.V.en_AU
dc.description.sponsorshipThis research was sponsored by the Australian Research Council (ARC DP220101427). The facilities utilised were sponsored by the Australian Research Council (ARC Industrial Training Transformation Centre IC170100032). All funding sources are deeply appreciated by the authors.en_AU
dc.identifier.articlenumber111458en_AU
dc.identifier.citationCordeiro, I. M. D. C., Yuen, A. C. Y., Chen, T. B. Y., Wang, W., Yang, W., Chan, Q. N., & Yeoh, G. H. (2022). Atomistic characterisation of graphite oxidation and thermal decomposition mechanism under isothermal and non-isothermal heating scheme. Computational Materials Science, 210, 111458. doi:10.1016/j.commatsci.2022.111458en_AU
dc.identifier.issn0927-0256en_AU
dc.identifier.journaltitleComputational Materials Scienceen_AU
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2022.111458en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14577en_AU
dc.identifier.volume220en_AU
dc.language.isoenen_AU
dc.publisherElsevier B. V.en_AU
dc.subjectMolecular dynamics methoden_AU
dc.subjectGraphiteen_AU
dc.subjectOxidationen_AU
dc.subjectKineticsen_AU
dc.subjectPyrolysisen_AU
dc.subjectGrapheneen_AU
dc.subjectEnergy storageen_AU
dc.subjectTemperature range over 4000 Ken_AU
dc.subjectIsothermal processesen_AU
dc.subjectMolecular structureen_AU
dc.titleAtomistic characterisation of graphite oxidation and thermal decomposition mechanism under isothermal and non-isothermal heating schemeen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections