Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries

dc.contributor.authorLei, YJen_AU
dc.contributor.authorLu, XXen_AU
dc.contributor.authorYoshikawa, Hen_AU
dc.contributor.authorMatsumura, Den_AU
dc.contributor.authorFan, YMen_AU
dc.contributor.authorZhao, LFen_AU
dc.contributor.authorLi, JYen_AU
dc.contributor.authorWang, SJen_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorLiu, HKen_AU
dc.contributor.authorDou, SXen_AU
dc.contributor.authorDevaraj, Sen_AU
dc.contributor.authorRojo, Ten_AU
dc.contributor.authorLai, WHen_AU
dc.contributor.authorArmand, Men_AU
dc.contributor.authorWang, YXen_AU
dc.contributor.authorWang, GXen_AU
dc.date.accessioned2025-07-04T05:16:58Zen_AU
dc.date.available2025-07-04T05:16:58Zen_AU
dc.date.issued2024-04-18en_AU
dc.date.statistics2025-07-04en_AU
dc.description.abstractThe effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries. © The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.en_AU
dc.description.sponsorshipThis research was supported by the Australian Research Council (ARC) (DE220101113, DP220103301, and DP210101389). The authors acknowledge the use of the facilities at the UOW electron Microscopy Centre (LE0882813 and LE0237478), Dr. Tania Silver for her critical reading, and Dr. Shaobo Li, who conducted the time-of-flight secondary-ion mass spectrometry.en_AU
dc.format.mediumElectronicen_AU
dc.identifier.articlenumber3325en_AU
dc.identifier.citationLei, Y.-J., Lu, X., Yoshikawa, H., Matsumura, D., Fan, Y., Zhao, L., Li, J., Wang, S., Gu, Q., Liu, H.-K., Dou, S.-X., Devaraj, S., Rojo, T., Lai, W.-H., Armand, M., Wang, Y.-X., & Wang, G. (2024). Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nature Communications, 15(1), 3325. doi:10.1038/s41467-024-47628-3en_AU
dc.identifier.issn2041-1723en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleNature Communicationsen_AU
dc.identifier.urihttps://doi.org/10.1038/s41467-024-47628-3en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16273en_AU
dc.identifier.volume15en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherSpringer Natureen_AU
dc.titleUnderstanding the charge transfer effects of single atoms for boosting the performance of Na-S batteriesen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2024-04-08en_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-024-47628-3.pdf
Size:
5.89 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections