Impact of salinity and carbonate saturation on stable Sr isotopes (δ88/86Sr) in a lagoon-estuarine system
dc.contributor.author | Shao, YX | en_AU |
dc.contributor.author | Farkaš, J | en_AU |
dc.contributor.author | Mosely, LM | en_AU |
dc.contributor.author | Tyler, JJ | en_AU |
dc.contributor.author | Wong, HKY | en_AU |
dc.contributor.author | Chamberlayne, BK | en_AU |
dc.contributor.author | Raven, M | en_AU |
dc.contributor.author | Samanta, M | en_AU |
dc.contributor.author | Holmden, C | en_AU |
dc.contributor.author | Gillanders, BG | en_AU |
dc.contributor.author | Kolevica, A | en_AU |
dc.contributor.author | Eisenhauer, A | en_AU |
dc.date.accessioned | 2022-11-02T22:20:46Z | en_AU |
dc.date.available | 2022-11-02T22:20:46Z | en_AU |
dc.date.issued | 2021-01-15 | en_AU |
dc.date.statistics | 2022-08-29 | en_AU |
dc.description.abstract | Local carbonate cycling in lagoon-estuarine systems, involving processes such as inorganic and biogenic carbonate precipitation/dissolution, represents an important but poorly constrained component of the coastal carbon budget. This study investigates the sensitivity of stable Sr isotope tracer (δ88/86Sr) with respect to carbonate saturation and salinity of local waters in the Coorong, Lower Lakes and Murray Mouth (CLLMM) estuary in South Australia. The CLLMM has an extensive range of salinity from fresh to hypersaline (from ∼0 to over 100 PSU), with corresponding variations in water chemistry and major ion composition that in turn controls mineral saturation states, and thus CaCO3 precipitation/dissolution in local waters. Here we use the novel δ88/86Sr tracer in tandem with the more established radiogenic Sr isotope ratio (87Sr/86Sr), where the latter is a robust proxy for Sr sources and thus water provenance. We also produced a geochemical (PHREEQC) model of calcium carbonate (CaCO3) saturation changes across this unique lagoon-estuarine system. The results indicate a systematically increasing trend of δ88/86Sr (from ∼0.25‰ to ∼0.45‰) with increasing salinity and CaCO3 (aragonite, calcite) saturation indices of the coastal waters, which in turn suggest an overall control of carbonate dissolution/precipitation processes on the stable Sr isotope composition in the CLLMM system. This was further corroborated by Ca isotope data (δ44/40Ca) published previously on the same samples from the Coorong, as well as a quantitative simulation of local carbonate removal in the lagoon based on Rayleigh modelling and Sr isotope data. Overall, our results confirm that a coupled Sr isotope approach (combining 87Sr/86Sr and δ88/86Sr) can be used to constrain not only the main water sources (continental versus marine Sr) but also local CaCO3 dissolution/precipitation processes, and thus inorganic carbon and coastal carbonate cycling in the CLLMM system. Finally, this coupled δ88/86Sr and 87Sr/86Sr approach can be potentially applied to fossil carbonate archives to reconstruct paleo-hydrology and salinity changes in the CLLMM and/or other carbonate-producing coastal systems. © 2020 Elsevier Ltd. | en_AU |
dc.description.sponsorship | This work was supported by the Project Coorong (HCHB – Healthy Coorong Healthy Basin program) and the Czech Science Foundation (GACR grant No. 17-18120S), and additional support from the Environment Institute of the University of Adelaide as well as an ARC Linkage project (LP160101353) are also acknowledged. This study is part of the Ph.D. research of YS, supported by an Adelaide Graduate Research Scholarship, ANSTO research portal (No. 11642), and funding from the CRC LEME Regolith Science Scholarship via Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME) Regolith Science Scholarship. | en_AU |
dc.identifier.citation | Shao, Y., Farkaš, J., Mosley, L., Tyler, J., Wong, H., Chamberlayne, B., Raven, M., Samanta, M., Holmden, C., Gillanders, B. G., Kolevica, A. & Eisenhauer, A. (2021). Impact of salinity and carbonate saturation on stable Sr isotopes (δ88/86Sr) in a lagoon-estuarine system. Geochimica et Cosmochimica Acta, 293, 461-476. doi:10.1016/j.gca.2020.11.014 | en_AU |
dc.identifier.issn | 0016-7037 | en_AU |
dc.identifier.journaltitle | Geochimica et Cosmochimica Acta | en_AU |
dc.identifier.pagination | 461-476 | en_AU |
dc.identifier.uri | https://doi.org/10.1016/j.gca.2020.11.014 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/13956 | en_AU |
dc.identifier.volume | 293 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Elsevier | en_AU |
dc.subject | Stable isotopes | en_AU |
dc.subject | Carbonates | en_AU |
dc.subject | Strontium | en_AU |
dc.subject | Estuaries | en_AU |
dc.subject | Salinity | en_AU |
dc.subject | Water chemistry | en_AU |
dc.title | Impact of salinity and carbonate saturation on stable Sr isotopes (δ88/86Sr) in a lagoon-estuarine system | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: