Defect structure and property consequence when small Li+ ions meet BaTiO3

dc.contributor.authorNarayanan, Nen_AU
dc.contributor.authorLou, Qen_AU
dc.contributor.authorRawal, Aen_AU
dc.contributor.authorLu, Ten_AU
dc.contributor.authorLiu, Zen_AU
dc.contributor.authorChen, Jen_AU
dc.contributor.authorLangley, Jen_AU
dc.contributor.authorChen, Hen_AU
dc.contributor.authorHester, JRen_AU
dc.contributor.authorCox, Nen_AU
dc.contributor.authorFuess, Hen_AU
dc.contributor.authorMcIntyre, GJen_AU
dc.contributor.authorLi, Gen_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorLiu, Yen_AU
dc.date.accessioned2021-12-17T00:19:15Zen_AU
dc.date.available2021-12-17T00:19:15Zen_AU
dc.date.issued2020-08-31en_AU
dc.date.statistics2021-11-25en_AU
dc.description.abstractIn the present work the longstanding issue of the structure and dynamics of smaller ions in oxides and its impact on the properties was investigated on 7% Li-doped BaTiO3. The investigation combined several techniques, notably neutron powder diffraction (NPD), nuclear magnetic resonance (7Li-NMR), electron paramagnetic resonance (EPR), electron microprobe, electric polarization (EP) measurement, and electronic structure calculations based on density-functional theory (DFT). Electron microprobe confirmed multiple phases, one containing incorporated Li in the BaTiO3 host lattice and another glassy phase which breaks the host lattice due to excessive Li accumulation. While the average structure of Li in BaTiO3 could not be determined by NPD, 7Li-NMR revealed one broad “disordered” and multiple “ordered” peaks. Local structure models with different defect types involving Li+ were modeled and the corresponding chemical shifts (δ) were compared with experimental values. It is found that the closest defect model describing the ordered peaks, is with Ti4+ being replaced by four Li+ ions. The biexponential behavior of the spin-lattice relaxation of the ordered peaks each with a short and a long relaxation discloses the existence of paramagnetic ions. Finally, EPR revealed the existence of the paramagnetic ion Ti3+ as a charge-transfer defect. DFT calculations disclosed local antipolar displacements of Ti ions around both types of defect sites upon insertion of Li+. This is in accordance with the experimental observation of pinching effects of the EP in Li-doped BaTiO3. These studies demonstrate the huge impact of the local structure of the doped smaller/lighter ions on the functional properties of oxides. ©2020 American Physical Societyen_AU
dc.identifier.articlenumber84412en_AU
dc.identifier.citationNarayanan, N., Lou, Q., Rawal, A., Lu, T., Liu, Z., Chen, J., Langley, J., Chen, H., Hester, J., Cox, N., Fuess, H., McIntyre, G. J., Li, G., Yu, D., & Liu, Y. (2020). Defect structure and property consequence when small Li+ ions meet BaTiO3. Physical Review Materials, 4(8), 084412. doi:10.1103/PhysRevMaterials.4.084412en_AU
dc.identifier.issn2475-9953en_AU
dc.identifier.issue8en_AU
dc.identifier.journaltitlePhysical Review Materialsen_AU
dc.identifier.urihttps://doi.org/10.1103/PhysRevMaterials.4.084412en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12523en_AU
dc.identifier.volume4en_AU
dc.language.isoenen_AU
dc.publisherAmerican Physical Societyen_AU
dc.subjectFerroelectric materialsen_AU
dc.subjectAntiferroelectric materialsen_AU
dc.subjectDefectsen_AU
dc.subjectDensityen_AU
dc.subjectElectronic structureen_AU
dc.subjectElectrical propertiesen_AU
dc.subjectOxidesen_AU
dc.subjectIonsen_AU
dc.subjectLithiumen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectNuclear magnetic resonanceen_AU
dc.subjectElectron microprobe analysisen_AU
dc.subjectDoped materialsen_AU
dc.titleDefect structure and property consequence when small Li+ ions meet BaTiO3en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections