Crystal chemistry and phase manipulation in Synroc

dc.contributor.authorVance, ERen_AU
dc.contributor.authorMoricca, SAen_AU
dc.contributor.authorThorogood, GJen_AU
dc.contributor.authorLumpkin, GRen_AU
dc.date.accessioned2022-05-05T01:00:46Zen_AU
dc.date.available2022-05-05T01:00:46Zen_AU
dc.date.issued1991en_AU
dc.date.statistics2022-04-08en_AU
dc.descriptionProceedings of the 2nd International Ceramic Conference (AUSTCERAM '90), Perth, Western Australia, August 1990en_AU
dc.description.abstractSynroc is a multi-phase ceramic designed for geological immobilisation of radioactive waste produced by reprocessing nuclear fuel from power reactors [1]. The main crystalline phases are hollandite, perovskite, zirconolite, and reduced titanium oxide. The compositions of these phases and the nuclides they can incorporate in solid solution are shown in Table 1. Table 1. Principal Phases comprising Synroc Phase Nominal Composition Waste nuclides incorporated Estimated wt%* [2] Hollandite Ba1.14(Al, Tr3+)2.28Ti6O16 Cs, Sr, Rb 25 Perovskite CaTio3 Sr, RE, An 20 Zirconolite CaZrTi2O7 RE, An 20 Titanium Oxide TinO2n-1 - 35 *No HLW present RE = rare earths, An = actinides. The main (Synroc-C) formulation is designed for Purex reprocessing waste and the standard composition is wt%: Al2O3(4.3); BaO(4.4); CaO(8.8); ZrO2(5.6); TiO2(57.9); waste oxides (20). The loading of high-level waste (HLW) oxides can be varied if desired, but probably cannot exceed a value of 30-35% [2]. Several variants of this composition have been formulated at the laboratory scale, with Synroc-D, E and F being directed towards Savannah River (U.S.A.) military waste, encapsulation of high-level nuclear reprocessing waste and unreprocessed spent fuel respectively. © 1991 Trans Tech Publications Ltd.en_AU
dc.identifier.citationVance, E. R., Moricca, S., Thorogood, G. J., & Lumpkin, G. R. (1991). Crystal chemistry and phase manipulation in Synroc. Paper presented at the 2nd International Ceramic Conference (AUSTCERAM’90), Perth, Western Australia, August 1990. In Key Engineering Materials, 53-55, 717-721. doi:10.4028/www.scientific.net/KEM.53-55.71en_AU
dc.identifier.conferenceenddateAugust 1990en_AU
dc.identifier.conferencename2nd International Ceramic Conference (AUSTCERAM '90)en_AU
dc.identifier.conferenceplacePerth, Western Australia.en_AU
dc.identifier.conferencestartdateAugust 1990en_AU
dc.identifier.issn1662-9795en_AU
dc.identifier.journaltitleKey Engineering Materialsen_AU
dc.identifier.pagination717-721en_AU
dc.identifier.urihttps://doi.org/10.4028/www.scientific.net/KEM.53-55.717en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13103en_AU
dc.identifier.volume53-55en_AU
dc.language.isoenen_AU
dc.publisherTrans Tech Publications Ltden_AU
dc.subjectCrystalsen_AU
dc.subjectChemistryen_AU
dc.subjectSynthetic rocksen_AU
dc.subjectRadioactive wastesen_AU
dc.subjectSynroc processen_AU
dc.subjectPhase transformationsen_AU
dc.titleCrystal chemistry and phase manipulation in Synrocen_AU
dc.typeConference paperen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: