Enhancing the reaction kinetics and structural stability of high-voltage LiCoO 2 via polyanionic species anchoring

dc.contributor.authorZheng, Wen_AU
dc.contributor.authorLiang, GMen_AU
dc.contributor.authorGuo, Hen_AU
dc.contributor.authorLi, JXen_AU
dc.contributor.authorZou, JSen_AU
dc.contributor.authorYuwono, JAen_AU
dc.contributor.authorShu, Hen_AU
dc.contributor.authorZhang, Sen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorThomsen, Len_AU
dc.contributor.authorHu, WBen_AU
dc.contributor.authorGuo, ZPen_AU
dc.date.accessioned2024-12-12T23:50:15Zen_AU
dc.date.available2024-12-12T23:50:15Zen_AU
dc.date.issued2024-05-16en_AU
dc.date.statistics2024-12-04en_AU
dc.description.abstractIncreasing the charging voltage to 4.6 V directly enhances battery capacity and energy density of LiCoO2 cathodes for lithium-ion batteries. However, issues of the activated harmful phase evolution and surface instability in high-voltage LiCoO2 lead to dramatic battery capacity decay. Herein, polyanionic PO43− species have been successfully anchored at the surface of LiCoO2 materials, achieving superior battery performance. The polyanionic species acting as micro funnels at the material surface, could expand LiCoO2 surface lattice spacing by 10%, contributing to enhanced Li diffusion kinetics and consequent excellent rate performance of 164 mA h g−1 at 20C (1C = 274 mA g−1). Crucially, polyanionic species with high electronegativity could stabilize surface oxygen at high voltage by reducing O 2p and Co 3d orbital hybridization, thus suppressing surface Co migration and harmful H1–3 phase formation and leading to superior cycling stability with 84% capacity retention at 1C after 300 cycles. Furthermore, pouch cells containing modified LiCoO2 and Li metal electrodes deliver an ultra-high energy density of 513 W h kg−1 under high loadings of 32 mg cm−2. This work provides insightful directions for modifying the material surface structure to obtain high-energy-density cathodes with high-rate performance and long service life. © Royal Society of Chemistry 2024.en_AU
dc.description.sponsorshipW. Zheng gratefully acknowledges the support of China Scholarship Council (no. 202108430035). This work is supported by the Australian Research Council under grants DP200101862, DP210101486, and FL210100050, as well as Australia's Economic Accelerator Seed Program (grant number AE230100120). This research was supported by an AINSE Ltd. Early Career Researcher Grant (ECRG- G. Liang). B. Johannessen is supported by a Fellowship at the University of Wollongong. Part of this work was carried out at the Powder Diffraction beamline (M18569; M20097), the Soft X-ray (SXR) beamline (M19192, M20483) and Medium Energy X-ray Absorption Spectroscopy 1 (MEX1) beamline of the Australian Synchrotron, and the Echidna (P14124) and Wombat (P14124) instruments at the Australian Centre for Neutron Scattering at the Australian Nuclear Science and Technology Organisation (ANSTO). The authors acknowledge the Adelaide Microscopy centre for their support and equipment assistance.en_AU
dc.identifier.citationZheng, W., Liang, G., Guo, H., Li, J., Zou, J., Yuwono, J. A., Shu, H., Zhang, S., Peterson, V. K., Johannessen, B., Thomsen, L., Hu, W., & Guo, Z. (2024). Enhancing the reaction kinetics and structural stability of high-voltage LiCoO2via polyanionic species anchoring. Energy & Environmental Science, 17(12), 4147-4156. doi:10.1039/D4EE00726Cen_AU
dc.identifier.issn1754-5692en_AU
dc.identifier.issn1754-5706en_AU
dc.identifier.issue12en_AU
dc.identifier.journaltitleEnergy & Environmental Scienceen_AU
dc.identifier.pagination4147-4156en_AU
dc.identifier.urihttps://doi.org/10.1039/d4ee00726cen_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15823en_AU
dc.identifier.volume17en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistry (RSC)en_AU
dc.subjectLithiumen_AU
dc.subjectCobalten_AU
dc.subjectCathodesen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectMaterialsen_AU
dc.subjectDiffusionen_AU
dc.subjectKineticsen_AU
dc.subjectElectrodesen_AU
dc.subjectOxygenen_AU
dc.titleEnhancing the reaction kinetics and structural stability of high-voltage LiCoO 2 via polyanionic species anchoringen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections