Extracting 10Be and 9Be from Antarctic marine sediments – a comparison of different extraction techniques

dc.contributor.authorJeromson, MRen_AU
dc.contributor.authorFujioka, Ten_AU
dc.contributor.authorFink, Den_AU
dc.contributor.authorPost, ALen_AU
dc.contributor.authorSimon, KJen_AU
dc.contributor.authorSánchez-Palacios, JTen_AU
dc.contributor.authorBlaxell, Men_AU
dc.contributor.authorEnge, TGen_AU
dc.contributor.authorWilcken, KMen_AU
dc.contributor.authorWhite, DAen_AU
dc.date.accessioned2023-01-20T01:23:41Zen_AU
dc.date.available2023-01-20T01:23:41Zen_AU
dc.date.issued2021-11-17en_AU
dc.date.statistics2022-07-01en_AU
dc.description.abstractApplication of meteoric-¹⁰ Be (M¹⁰ Be) in sediments and soils from diverse geomorphic settings has been active for many decades. In some cases, M¹⁰ Be is normalized by the reactive ⁹ Be from the same sediment sample. Given the complexities in geochemical pathways that M¹⁰ Be is incorporated in the reactive mineral phase of such sediments, very different Be isotope chemistry extraction techniques have been developed. Measurement of M¹⁰ Be and the reactive phase of ⁹ Be in coastal Antarctic marine sediments has increasingly become promising as a paleo-proxy for the presence (or absence) of past ice shelves, and/or subglacial meltwater discharge from grounded outlet glaciers draining the ice sheet. However, published works select different methods to chemically leach Be isotopes from the reactive phase of Antarctic marine sediment and few studies have quantitively compared the efficacy of different leaching recipes. This is problematic because comparisons of ¹⁰ Be/⁹ Be ratios across different Antarctic sites assumes the same chemical fractionation of Be isotopes regardless of the leaching method. We examined three large-volume sediment grabs from near the Amery Ice Shelf front in East Antarctica that represent a range of grainsize and environmental conditions. For Be extraction, homogenised materials from each of the three samples were treated with four different leaching procedures, 1–3 targeting the reactive phase: 1) 6M HCl; 2) 0.5M HCl followed by 1M hydroxylamine hydrochloride in 1M HCl; 3) 0.04M hydroxylamine hydrochloride in 25% acetic acid solution 4) a total extraction dissolving in HF, HNO₃ , and HClO₄ . We also selected one grab to assess the effect of grainsize within the following fractions: <38 um, 38–63 um, 63–90 um, 90–125 um, and >125 um. Each fraction was leached with 6M HCl for 24 hours at room temperature. We found that both the 6M HCl and the 1M hydroxylamine procedures leached the same amount of ¹⁰ Be as the total extraction, while the 0.04M hydroxylamine treatment leached only two thirds. Interestingly, the 6M HCl and the 0.04M hydroxylamine procedures leached the same relative proportion of ⁹ Be to ¹⁰ Be, and thus gave the same ¹⁰ Be/⁹ Be ratio, while the 1M hydroxylamine procedure leached relatively more ⁹ Be in relation to ¹⁰ Be, resulting in a lower ¹⁰ Be/⁹ Be than the other two methods. As shown in previous studies, our results indicate that Be-isotope concentrations varied inversely with grainsize, in our case increasing 4- fold from coarsest to finest fractions, critically showing that the ¹⁰ Be/⁹ Be ratio remained constant across all grainsizes. Hence, grainsize can be normalised by applying the reactive ¹⁰ Be/⁹ Be ratio. We conclude that differences in leaching procedures, can lead to significant variations in efficiencies in extracting Be isotopes from the reactive phase of sediment, whereas the ¹⁰ Be/⁹ Be ratio appears to remain the same. This study highlights the importance of careful method selection and its consistent application to allow for comparison between studies and more robust interpretation.en_AU
dc.identifier.citationJeromson, M., Fujioka, T., Fink, D., Post, A., Simon, K., Sánchez-Palacios, J. T., Blaxell, M., Enge, T. G., Wilcken, K., & White, D. (2021). Extracting 10Be and 9Be from Antarctic marine sediments – a comparison of different extraction techniques. Paper presented to the 15th International Conference on Accelerator Mass Spectrometry, ANSTO Sydney, Australia, November 15th – 19th, 2021. (pp. 246). Retrieved from: https://ams15sydney.com/wp-content/uploads/2021/11/AMS-15-Full-Program-and-Abstract-Book-R-1.pdfen_AU
dc.identifier.conferenceenddate19 November 2021en_AU
dc.identifier.conferencename15th International Conference on Accelerator Mass Spectrometryen_AU
dc.identifier.conferenceplaceSydney, Australiaen_AU
dc.identifier.conferencestartdate15 November 2021en_AU
dc.identifier.pagination246en_AU
dc.identifier.urihttps://ams15sydney.com/wp-content/uploads/2021/11/AMS-15-Full-Program-and-Abstract-Book-R-1.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14439en_AU
dc.language.isoenen_AU
dc.publisherAustralian Nuclear Science and Technology Organisationen_AU
dc.subjectBeryllium 10en_AU
dc.subjectBeryllium 9en_AU
dc.subjectExtractionen_AU
dc.subjectAntarcticaen_AU
dc.subjectAquatic ecosystemsen_AU
dc.subjectSedimentsen_AU
dc.subjectSoilsen_AU
dc.subjectGeochemistryen_AU
dc.subjectGlaciersen_AU
dc.subjectLeachingen_AU
dc.subjectBeryllium isotopesen_AU
dc.titleExtracting 10Be and 9Be from Antarctic marine sediments – a comparison of different extraction techniquesen_AU
dc.typeConference Abstracten_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AMS-15-Full-Program-and-Abstract-Book-R-1.pdf
Size:
4.92 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: