Magnetocaloric Mn(Co1-xNix)Ge - structural and magnetic transitions

dc.contributor.authorRen, QYen_AU
dc.contributor.authorHutchinson, WDen_AU
dc.contributor.authorWang, JLen_AU
dc.contributor.authorStuder, AJen_AU
dc.contributor.authorCampbell, SJen_AU
dc.date.accessioned2022-08-30T00:45:43Zen_AU
dc.date.available2022-08-30T00:45:43Zen_AU
dc.date.issued2018-01-30en_AU
dc.date.statistics2021-10-11en_AU
dc.description.abstractThe structural and magnetic properties of MnCoGe-based alloys have been studied extensively in recent years due to their potential application as magnetic cooling materials based on the magnetocaloric effect (MCE). The Mn(Co1-xNix)Ge series is of particular interest as magnetic transitions in the range 275 K to 345 K generally coincide with a martensitic structural transition TM, with such an overlap then allowing scope for the formation of magneto-structural transitions (ferromagnetic orthorhombic to paramagnetic hexagonal) and hence an associated large MCE [e.g. 1]. Neutron diffraction, magnetisation and x-ray experiments on Mn(Co1-xNix)Ge compounds (x = 0.12 to 1.00) have demonstrated magnetic structures ranging from ferromagnetic for x < 0.50 to non-collinear spiral antiferromagnetic for x > 0.55 at low temperature (e.g. 5 K). TM is found to decrease initially with increasing Ni content and then increase. First-order magneto-structural transitions are observed in Mn(Co1-xNix)Ge samples for ~0.20 < x < ~0.65 with the presence of ferro-/antiferro-magnetic structures in Mn(Co1-xNix)Ge allowing investigation of both direct and inverse magnetocaloric effects. Our results (including the magnetic phase diagram for Mn(Co1-xNix)Ge) are discussed in terms of the increase of valence electron concentration on substitution of Ni (3d84s2) for Co (3d74s2) in the orthorhombic phase, leading to expansion of the unit cell and redistribution of the valence electrons [2].en_AU
dc.identifier.citationRen. Q., Hutchinson. W. D., Wang. J., Studer, A. J., & Campbell, S. J. (2018). Magnetocaloric Mn(Co1-xNix)Ge - structural and magnetic transitions. Poster presented to the 42nd Annual Condensed Matter and Materials Meeting Charles Sturt University, Wagga Wagga, NSW 30th January – 2nd February, 2018, (pp. 77). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2018/Wagga_2018_Conference_Handbook.pdfen_AU
dc.identifier.conferenceenddate2 February 2018en_AU
dc.identifier.conferencename42nd Annual Condensed Matter and Materials Meetingen_AU
dc.identifier.conferenceplaceWagga Wagga, NSWen_AU
dc.identifier.conferencestartdate30 January 2018en_AU
dc.identifier.pagination77en_AU
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2018/Wagga_2018_Conference_Handbook.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13666en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Physicsen_AU
dc.subjectManganeseen_AU
dc.subjectCobalten_AU
dc.subjectRefrigeratorsen_AU
dc.subjectAlloysen_AU
dc.subjectTemperature range 0013-0065 Ken_AU
dc.subjectMartensitic steelsen_AU
dc.subjectFerromagnetic materialsen_AU
dc.subjectOrthorhombic latticesen_AU
dc.subjectElectronsen_AU
dc.titleMagnetocaloric Mn(Co1-xNix)Ge - structural and magnetic transitionsen_AU
dc.typeConference Posteren_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wagga_2018_Conference_Handbook.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: