High-accuracy transmission and fluorescence XAFS of zinc at 10 K, 50 K, 100 K and 150 K using the hybrid technique

dc.contributor.authorJohn, MWen_AU
dc.contributor.authorSier, Den_AU
dc.contributor.authorEkanayake, RSKen_AU
dc.contributor.authorSchalken, MJen_AU
dc.contributor.authorTran, CQen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorde Jonge, MDen_AU
dc.contributor.authorKappen, Pen_AU
dc.contributor.authorChantler, CTen_AU
dc.date.accessioned2023-01-27T00:51:33Zen_AU
dc.date.available2023-01-27T00:51:33Zen_AU
dc.date.issued2022-10-24en_AU
dc.date.statistics2023-01-13en_AU
dc.descriptionWe gratefully acknowledge the collaboration with Zwi Barnea who drove the investigation of Zn. Some of this research was undertaken on the XAS beamline at the Australian Synchrotron, part of ANSTO. We thank beamline scientists at the Australian Synchrotron for their support and dedication to build up part of this methodology. We thank the synchrotron team, including Jeremy Wykes, Chris Glover and Susan Cumberland.en_AU
dc.description.abstractThe most accurate measurements of the mass attenuation coefficient for metals at low temperature for the zinc K-edge from 9.5 keV to 11.5 keV at temperatures of 10 K, 50 K, 100 K and 150 K using the hybrid technique are reported. This is the first time transition metal X-ray absorption fine structure (XAFS) has been studied using the hybrid technique and at low temperatures. This is also the first hybrid-like experiment at the Australian Synchrotron. The measured transmission and fluorescence XAFS spectra are compared and benchmarked against each other with detailed systematic analyses. A recent method for modelling self-absorption in fluorescence has been adapted and applied to a solid sample. The XAFS spectra are analysed using eFEFFIT to provide a robust measurement of the evolution of nanostructure, including such properties as net thermal expansion and mean-square relative displacement. This work investigates crystal dynamics, nanostructural evolution and the results of using the Debye and Einstein models to determine atomic positions. Accuracies achieved, when compared with the literature, exceed those achieved by both relative and differential XAFS, and represent a state-of-the-art for future structural investigations. Bond length uncertainties are of the order of 20–40 fm. © Open Access - CC BY 4.0 licenceen_AU
dc.identifier.citationJohn, M. W., Sier, D., Ekanayake, R. S. K., Schalken, M. J., Tran, C. Q., Johannessen, B., de Jonge, M. D., Kappen, P., & Chantler, C. T. (2023). High-accuracy transmission and fluorescence XAFS of zinc at 10 K, 50 K, 100 K and 150 K using the hybrid technique. Journal of Synchrotron Radiation, 30(1), 147-168. doi:10.1107/S1600577522010293en_AU
dc.identifier.issn1600-5775en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleJournal of Synchrotron Radiationen_AU
dc.identifier.pagination147-168en_AU
dc.identifier.urihttps://doi.org/10.1107/S1600577522010293en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14527en_AU
dc.identifier.volume30en_AU
dc.language.isoenen_AU
dc.publisherInternational Union of Crystallographyen_AU
dc.subjectX-ray spectroscopyen_AU
dc.subjectTransmissionen_AU
dc.subjectFluorescenceen_AU
dc.subjectZincen_AU
dc.subjectMetalsen_AU
dc.subjectTemperature range 0065-0273 Ken_AU
dc.subjectDebye lengthen_AU
dc.subjectBond lengthsen_AU
dc.subjectThermal expansionen_AU
dc.titleHigh-accuracy transmission and fluorescence XAFS of zinc at 10 K, 50 K, 100 K and 150 K using the hybrid techniqueen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Journal of Synchrotron Radiation - 2022 - John - High‐accuracy transmission and fluorescence XAFS of zinc at 10 K 50 K -1.pdf
Size:
5.4 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections