3D transition metal ordering and Rietveld stacking fault quantification in the new oxychalcogenides La2O2Cu2–4xCd2xSe2

dc.contributor.authorAinsworth, CMen_AU
dc.contributor.authorLewis, JWen_AU
dc.contributor.authorWang, CHen_AU
dc.contributor.authorCoelho, AAen_AU
dc.contributor.authorJohnston, HEen_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorEvans, JSOen_AU
dc.date.accessioned2021-12-07T21:54:58Zen_AU
dc.date.available2021-12-07T21:54:58Zen_AU
dc.date.issued2016-04-04en_AU
dc.date.statistics2021-11-11en_AU
dc.description.abstractA number of LnOCuCh (Ln = La-Nd, Bi; Ch = S, Se, Te) compounds have been reported in the literature built from alternating layers of fluorite-like [Ln2O2]2+ sheets and antifluorite-like [M2Se2]2- sheets, where M is in the +1 oxidation state leading to full occupancy of available MSe4/2 tetrahedral sites. There is also a family of related LnOM0.5Se (Ln = La & Ce, M = Fe, Zn, Mn & Cd) compounds built from alternating layers of [Ln2O2]2+ sheets and [MSe2]2- sheets, where M is in the +2 oxidation state with half occupancy of available tetrahedral sites and complex ordering schemes in two dimensions. This paper reports a new family of compounds containing both +1 and +2 metal ions in the La2O2Cu2-4xCd2xSe2 family. We show how Cu1+ and Cd2+ ions segregate into distinct fully occupied and half occupied checkerboard-like layers respectively, leading to complex long-range superstructures in the third (stacking) dimension. To understand the structure and microstructure of these new materials we have developed and implemented a new methodology for studying low and high probability stacking faults using a Rietveld-compatible supercell approach capable of analyzing systems with thousands of layers. We believe this method will be widely applicable. © 2016 American Chemical Society.en_AU
dc.description.sponsorshipWe thank EPSRC for funding (EP/J011533/1). Powder diffraction data were collected on the Powder Diffraction beamline at the Australian synchrotron. We thank Ivana Evans, Matthew Tate, Nicola Scarlett, and Garry McIntyre for assistance with data collections. JSOE would like to thank ANSTO for a visiting position during which part of this research was performed.en_AU
dc.identifier.citationAinsworth, C. M., Lewis, J. W., Wang, C.-H., Coelho, A. A., Johnston, H. E. A., Brand, H. E. & Evans, J. S. O.(2016). 3D transition metal ordering and Rietveld stacking fault quantification in the new oxychalcogenides La2O2Cu2–4 x Cd2 x Se2. Chemistry of Materials, 28(9), 3184-3195.doi:10.1021/acs.chemmater.6b00924en_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.issue9en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination3184-3195en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.6b00924en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12376en_AU
dc.identifier.volume28en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectDefectsen_AU
dc.subjectMaterialsen_AU
dc.subjectLayersen_AU
dc.subjectTransition elementsen_AU
dc.subjectOxidationen_AU
dc.subjectIonsen_AU
dc.subjectCalculation methodsen_AU
dc.title3D transition metal ordering and Rietveld stacking fault quantification in the new oxychalcogenides La2O2Cu2–4xCd2xSe2en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections