The unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: a sodium-centred perspective

dc.contributor.authorSharma, Nen_AU
dc.contributor.authorGonzalo, Een_AU
dc.contributor.authorPramudita, JCen_AU
dc.contributor.authorHan, MHen_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorHart, JNen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorGuo, ZPen_AU
dc.contributor.authorRojo, Ten_AU
dc.date.accessioned2021-12-08T20:02:44Zen_AU
dc.date.available2021-12-08T20:02:44Zen_AU
dc.date.issued2015-08-17en_AU
dc.date.statistics2021-11-12en_AU
dc.description.abstractThe development of new insertion electrodes in sodium-ion batteries requires an in-depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X-ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3-phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3-phase persists throughout the charge/discharge cycle but undergoes a series of two-phase and solid-solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space-group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two-phase and solid-solution phase transitions simultaneously. The Mn/Fe-O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3-phase throughout the charge/discharge process. © 2015 Wiley-VCH Verlag GmbH & Co.en_AU
dc.description.sponsorshipMinisterio de Economía y Competitividad. Grant Number: 2013 Reference Nos. ENE. Grant Numbers: 2013–44330-R, FPDI-2013–17329 Gobierno Vasco/EuskoJaurlaritza. Grant Numbers: 10, SAIOTEK-12, IT570–13en_AU
dc.identifier.citationSharma, N., Gonzalo, E., Pramudita, J. C., Han, M. H., Brand, H. E. A., Hart, J. N., Pang, W. K., Guo, Z. P. & Rojo, T. (2015). The unique structural evolution of the O3‐phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: a sodium‐centred perspective. Advanced Functional Materials, 25(31), 4994-5005. doi:10.1002/adfm.201501655en_AU
dc.identifier.issn1616-301Xen_AU
dc.identifier.issue31en_AU
dc.identifier.journaltitleAdvanced Functional Materialsen_AU
dc.identifier.pagination4994-5005en_AU
dc.identifier.urihttps://doi.org/10.1002/adfm.201501655en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12391en_AU
dc.identifier.volume25en_AU
dc.language.isoenen_AU
dc.publisherJohn Wiley & Sons, Incen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectLayersen_AU
dc.subjectOxidesen_AU
dc.subjectElectrodesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectSodium ionsen_AU
dc.titleThe unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: a sodium-centred perspectiveen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections