Ultrastable all-solid-state sodium rechargeable batteries
dc.contributor.author | Yang, J | en_AU |
dc.contributor.author | Liu, G | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Wan, H | en_AU |
dc.contributor.author | Han, F | en_AU |
dc.contributor.author | Shen, L | en_AU |
dc.contributor.author | Zou, Z | en_AU |
dc.contributor.author | Shi, S | en_AU |
dc.contributor.author | Hu, YS | en_AU |
dc.contributor.author | Wang, CS | en_AU |
dc.contributor.author | Yao, X | en_AU |
dc.date.accessioned | 2021-07-14T03:05:52Z | en_AU |
dc.date.available | 2021-07-14T03:05:52Z | en_AU |
dc.date.issued | 2020-08-11 | en_AU |
dc.date.statistics | 2021-07-06 | en_AU |
dc.description.abstract | The insufficient ionic conductivity of oxide-based solid electrolytes and the large interfacial resistance between the cathode material and the solid electrolyte severely limit the performance of room-temperature all-solid-state sodium rechargeable batteries. A NASICON solid electrolyte Na3.4Zr1.9Zn0.1Si2.2P0.8O12, with superior room-temperature conductivity of 5.27 × 10–3 S cm–1, is achieved by simultaneous substitution of Zr4+ by aliovalent Zn2+ and P5+ by Si4+ in Na3Zr2Si2PO12. The bulk conductivity and grain boundary conductivity of Na3.4Zr1.9Zn0.1Si2.2P0.8O12 are nearly 20 times and almost 50 times greater than those of pristine Na3Zr2Si2PO12, respectively. The FeS2||polydopamine-Na3.4Zr1.9Zn0.1Si2.2P0.8O12||Na all-solid-state sodium batteries, with a polydopamine modification thin layer between the solid electrolyte and the cathode, maintain a high reversible capacity of 236.5 mAh g–1 at a 0.1 C rate for 100 cycles and a capacity of 133.1 mAh g–1 at 0.5 C for 300 cycles, demonstrating high performance for all-solid-state sodium batteries. © 2020 American Chemical Society | en_AU |
dc.identifier.citation | Yang, J., Liu, G., Avdeev, M., Wan, H., Han, F., Shen, L., Zou, Z., Shi, S., Hu, Y.-S., Wang, C., & Yao, X. (2020).Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Letters, 5(9) 2835-2841. doi:10.1021/acsenergylett.0c01432. | en_AU |
dc.identifier.issn | 2380-8195 | en_AU |
dc.identifier.issue | 9 | en_AU |
dc.identifier.journaltitle | ACS Energy Letters | en_AU |
dc.identifier.pagination | 2835-2841 | en_AU |
dc.identifier.uri | https://doi.org/10.1021/acsenergylett.0c01432 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11055 | en_AU |
dc.identifier.volume | 5 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Sodium | en_AU |
dc.subject | Electrolytes | en_AU |
dc.subject | Electric batteries | en_AU |
dc.subject | Electric conductivity | en_AU |
dc.subject | Layers | en_AU |
dc.subject | Cathodes | en_AU |
dc.title | Ultrastable all-solid-state sodium rechargeable batteries | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: