A new approach to the creation of magnetically modulated structures
dc.contributor.author | Saerbeck, T | en_AU |
dc.contributor.author | Klose, F | en_AU |
dc.contributor.author | Lott, D | en_AU |
dc.contributor.author | Mankey, GJ | en_AU |
dc.contributor.author | Lu, Z | en_AU |
dc.contributor.author | LeClair, PR | en_AU |
dc.contributor.author | Stampfl, APJ | en_AU |
dc.contributor.author | Danilkin, SA | en_AU |
dc.contributor.author | Yethiraj, M | en_AU |
dc.contributor.author | Schreyer, A | en_AU |
dc.date.accessioned | 2021-10-05T00:35:13Z | en_AU |
dc.date.available | 2021-10-05T00:35:13Z | en_AU |
dc.date.issued | 2010-02-03 | en_AU |
dc.date.statistics | 2021-09-03 | en_AU |
dc.description.abstract | The plethora of structural and magnetic properties observed in many transition metal alloys has attracted a great deal of interest in both the pure and applied sciences [1]. One key attribute of these alloys is that their electronic and magnetic properties are extremely sensitive to not only stoichiometry but order as well. In this paper we report on a new approach of creating a magnetically modulated structure, without changing composition or lattice structure, namely by artificially controlling the degree of chemical order in the material. The compound FePt3, as it is well known from bulk crystals, has the extraordinary property to evolve ferromagnetic (FM) or antiferromagnetic (AFM) phases determined by the degree of chemical ordering [2]. We succeeded in preparing epitaxial FePt3 superlattices of homogeneous composition consisting of an artificially modulated ferro/antiferromagnetic layering sequence simply by alternating the growth temperature. A direct effect of such an exotic FM/AFM interface is the observation of a high exchange bias upon field cooling through the Nèel temperature. In order to quantify the degree of antiferromagnetic ordering, high angle neutron diffraction has been performed using the triple axis spectrometer IN12 (Institute Laue Langevin, Grenoble) and TAIPAN (Australian Nuclear Science and Technology Organisation). Similar to chemically ordered bulk FePt3 the superlattice exhibits the onset of a (½ ½ 0) AFM Bragg peak below a temperature of TN=140 K (Bulk TN=160 K [2]). Using the polarized neutron reflectometry technique at the German research facility GKSS, Geesthacht, a detailed layer resolved magnetic characterization of the superlattice was carried out. | en_AU |
dc.identifier.citation | Saerbeck, T., Klose, F., Lott, D., Mankey, G. J., Lu, Z., LeClair, P. R., Stampfl, A. P. J., Danilkin, S., Yethiraj, M., & Schreyer, A. (2010). A new approach to the creation of magnetically modulated structures. Paper presented to the 34th Annual Condensed Matter and Materials Meeting 2010, Waiheke Island Resort, Waiheke, Auckland, New Zealand 2 - 5 February 2010. Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2010/ | en_AU |
dc.identifier.conferenceenddate | 5 February 2010 | en_AU |
dc.identifier.conferencename | 4th Annual Condensed Matter and Materials Meeting 2010 | en_AU |
dc.identifier.conferenceplace | Auckland, New Zealand | en_AU |
dc.identifier.conferencestartdate | 2 February 2010 | en_AU |
dc.identifier.isbn | 978-0-646-53897-6 | en_AU |
dc.identifier.uri | https://physics.org.au/wp-content/uploads/cmm/2010/ | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11875 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Australian Institute of Physics | en_AU |
dc.subject | Magnetic properties | en_AU |
dc.subject | Alloys | en_AU |
dc.subject | Metals | en_AU |
dc.subject | Ferromagnetic materials | en_AU |
dc.subject | Antiferroelectric materials | en_AU |
dc.subject | Stoichiometry | en_AU |
dc.subject | Crystal lattices | en_AU |
dc.subject | Spectrometers | en_AU |
dc.subject | Neutron diffraction | en_AU |
dc.subject | Bragg curve | en_AU |
dc.title | A new approach to the creation of magnetically modulated structures | en_AU |
dc.type | Conference Abstract | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: