Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution
dc.contributor.author | Bajo, P | en_AU |
dc.contributor.author | Borsato, A | en_AU |
dc.contributor.author | Drysdale, RN | en_AU |
dc.contributor.author | Hua, Q | en_AU |
dc.contributor.author | Frisia, S | en_AU |
dc.contributor.author | Zanchetta, G | en_AU |
dc.contributor.author | Hellstrom, JC | en_AU |
dc.contributor.author | Woodhead, JD | en_AU |
dc.date.accessioned | 2021-07-28T01:56:00Z | en_AU |
dc.date.available | 2021-07-28T01:56:00Z | en_AU |
dc.date.issued | 2017-08-01 | en_AU |
dc.date.statistics | 2021-07-15 | en_AU |
dc.description.abstract | In this study, the ‘dead carbon proportion’ (DCP) calculated from combined U-Th and radiocarbon analyses was used to explore the carbon isotope systematics in Corchia Cave (Italy) speleothems, using the example of stalagmite CC26 which grew during the last ∼12 ka. The DCP values in CC26 are among the highest ever recorded in a stalagmite, spanning the range 44.8–68.8%. A combination of almost closed-system conditions and sulphuric acid dissolution (SAD) are proposed as major drivers in producing such a high DCP with minor contribution from old organic matter from the deep vadose zone. The long-term decrease in both DCP and δ13C most likely reflects post-glacial soil recovery above the cave, with a progressive increase of soil CO2 contribution to the total dissolved inorganic carbon (DIC). Pronounced millennial-scale shifts in DCP and relatively small coeval but antipathetic changes in δ13C are modulated by the effects of hydrological variability on open and closed-system dissolution, SAD and prior calcite precipitation. Hence, the DCP in Corchia Cave speleothems represents an additional proxy for rainfall amount. © 2017 Elsevier Ltd. | en_AU |
dc.identifier.citation | Bajo, P., Borsato, A., Drysdale, R., Hua, Q., Frisia, S., Zanchetta, G., Hellstrom, J. & Woodhead, J. (2017). Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution. Geochimica et Cosmochimica Acta, 210, 208-227. doi:10.1016/j.gca.2017.04.038 | en_AU |
dc.identifier.issn | 0016-7037 | en_AU |
dc.identifier.journaltitle | Geochimica et Cosmochimica Acta | en_AU |
dc.identifier.pagination | 208-227 | en_AU |
dc.identifier.uri | https://doi.org/10.1016/j.gca.2017.04.038 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11131 | en_AU |
dc.identifier.volume | 210 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Elsevier | en_AU |
dc.subject | Inorganic acids | en_AU |
dc.subject | Carbonic acid | en_AU |
dc.subject | Carbon 14 | en_AU |
dc.subject | Carbon isotopes | en_AU |
dc.subject | Stable isotopes | en_AU |
dc.subject | Caves | en_AU |
dc.title | Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: