Structural, electrical, magnetic, and optical properties of iron-based ladder compounds BaFe2(S1−xSex)3

dc.contributor.authorImaizumi, Sen_AU
dc.contributor.authorAoyama, Ten_AU
dc.contributor.authorKimura, Ren_AU
dc.contributor.authorSasaki, Ken_AU
dc.contributor.authorNambu, Yen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorHirata, Yen_AU
dc.contributor.authorIkemoto, Yen_AU
dc.contributor.authorMoriwaki, Ten_AU
dc.contributor.authorImai, Yen_AU
dc.contributor.authorOhgushi, Ken_AU
dc.date.accessioned2021-07-14T04:57:37Zen_AU
dc.date.available2021-07-14T04:57:37Zen_AU
dc.date.issued2020-07-01en_AU
dc.date.statistics2021-07-06en_AU
dc.description.abstractWe performed a comprehensive study on structural, electrical, magnetic, and optical properties for iron-based ladder materials BaFe2(S1−xSex)3(0≤x≤1), which shows pressure-induced superconductivity in the vicinity of the Mott transition at x=0 and 1. We obtain a complete electronic phase diagram in a temperature-composition plane, which reveals that the magnetic ground state switches from the stripe-type to the block-type phase without any intermediate phase at x=0.23 with increasing x. This behavior is in sharp contrast to the filling controlled system Ba1−xCsxFe2Se3, in which a paramagnetic state down to the lowest temperature is realized between two magnetic ordered states. The structural transition, which is considered to be relevant to the orbital order, occurs far above the magnetic transition temperature. The magnetic and structural transition temperatures exhibit a similar composition dependence, indicating a close relationship between magnetic and orbital degrees of freedom. In addition, we found that charge dynamics are considerably influenced not only by the magnetic order but also by the structural change (orbital order) from the detailed measurements of electrical resistivity and optical conductivity spectra. We discuss the magnetism and orbital order by comparing the experimental results with the proposed theory based on the multiorbital Hubbard model. The relationship between the charge dynamics and the magnetic/orbital order is also discussed. ©2020 American Physical Societyen_AU
dc.identifier.articlenumber35104en_AU
dc.identifier.citationImaizumi, S., Aoyama, T., Kimura, R., Sasaki, K., Nambu, Y., Avdeev, M., Hirata, Y., Ikemoto, Y., Moriwaki, T., Imai, Y., & Ohgushi, K. (2020).Structural, electrical, magnetic, and optical properties of iron-based ladder compounds BaFe2(S1−xSex)3. Physical Review B, 102(3), 035104. doi:10.1103/PhysRevB.102.035104en_AU
dc.identifier.issn2469-9969en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitlePhysical Review Ben_AU
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.102.035104en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11061en_AU
dc.identifier.volume102en_AU
dc.language.isoenen_AU
dc.publisherAmerican Physical Societyen_AU
dc.subjectAntiferromagnetismen_AU
dc.subjectElectric conductivityen_AU
dc.subjectPhase diagramsen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectSuperconductorsen_AU
dc.subjectIronen_AU
dc.titleStructural, electrical, magnetic, and optical properties of iron-based ladder compounds BaFe2(S1−xSex)3en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections