Positron annihilation lifetime study of radiation-damaged natural zircons

dc.contributor.authorRoberts, Jen_AU
dc.contributor.authorGaugliardo, PRen_AU
dc.contributor.authorFarnan, Ien_AU
dc.contributor.authorZhang, Men_AU
dc.contributor.authorVance, ERen_AU
dc.contributor.authorDavis, Jen_AU
dc.contributor.authorKaratchevtseva, Ien_AU
dc.contributor.authorKnott, RBen_AU
dc.contributor.authorMudie, STen_AU
dc.contributor.authorBuckman, Jen_AU
dc.contributor.authorSullivan, JPen_AU
dc.date.accessioned2018-09-19T01:41:02Zen_AU
dc.date.available2018-09-19T01:41:02Zen_AU
dc.date.issued2016-04-01en_AU
dc.date.statistics2018-09-18en_AU
dc.description.abstractZircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼1019 α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter. © 2016 Elsevier B.V.en_AU
dc.identifier.citationRoberts, J., Gaugliardo, P., Farnan, I., Zhang, M., Vance, E. R., Davis, J.,Karatchevtseva, I., Knott, R. B. Mundie, S., Buckman, J., & Sullivan, J. P. (2016). Positron annihilation lifetime study of radiation-damaged natural zircons. Journal of Nuclear Materials, 471, 44-50. doi:10.1016/j.jnucmat.2015.12.008en_AU
dc.identifier.govdoc9014en_AU
dc.identifier.issn0022-3115en_AU
dc.identifier.journaltitleJournal of Nuclear Materialsen_AU
dc.identifier.pagination44-50en_AU
dc.identifier.urihttps://doi.org/10.1016/j.jnucmat.2015.12.008en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/9018en_AU
dc.identifier.volume471en_AU
dc.language.isoenen_AU
dc.publisherElsevier B.V.en_AU
dc.subjectPositron annihilation spectroscopyen_AU
dc.subjectZirconen_AU
dc.subjectRaman spectroscopyen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectPorosityen_AU
dc.subjectAlpha reactionsen_AU
dc.subjectAnnealingen_AU
dc.subjectMatteren_AU
dc.titlePositron annihilation lifetime study of radiation-damaged natural zirconsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections