Relationships between electron density and magnetic properties in water-bridged dimetal complexes

dc.contributor.authorOvergaard, Jen_AU
dc.contributor.authorWalsh, JPSen_AU
dc.contributor.authorHathwar, VRen_AU
dc.contributor.authorJørgensen, MRVen_AU
dc.contributor.authorHoffman, Cen_AU
dc.contributor.authorPlatts, JAen_AU
dc.contributor.authorPiltz, ROen_AU
dc.contributor.authorWinpenny, REPen_AU
dc.date.accessioned2016-10-11T00:46:35Zen_AU
dc.date.available2016-10-11T00:46:35Zen_AU
dc.date.issued2014en_AU
dc.date.statistics2016-10-11en_AU
dc.description.abstractThe experimental and theoretical electron density distributions in two structurally similar transition metal dimers (M = Ni, Co; see Figure) were analyzed using the atoms-in-molecules (AIM) approach, and selected properties related to the chemical bonding are compared to measured intramolecular magnetic exchange interaction parameters.The electron densities in two analogous dimetallic transition metal compounds, namely, [M2(μ-OH2)(tBuCOO)4(tBuCOOH)2(C5H5N)2] (M = Co(1), Ni(2)), were determined from combined X-ray and neutron single-crystal diffraction at 100 K. Excellent correspondence between the thermal parameters from X- and N-derived atomic displacement parameters is found, indicating high-quality X-ray data and a successful separation of thermal and electronic effects. Topological analysis of electron densities derived from high-resolution X-ray diffraction, as well as density functional theory calculations, shows no direct metal–metal bonding in either compound, while the total energy density at the bond critical points suggests stronger metal–oxygen interactions for the Ni system, in correspondence with its shorter bond distances. The analysis also allows for estimation of the relative strength of binding of terminal and bridging ligands to the metals, showing that the bridging water molecule is more strongly bound than terminal carboxylic acid, but less so than bridging carboxylates. Recently, modeling of magnetic and spectroscopic data in both of these systems has shown weak ferromagnetic interactions between the metal atoms. Factors related to large zero-field splitting effects complicate the magnetic analysis in both compounds, albeit to a much greater degree in 1. The current results support the conclusion drawn from previous magnetic and spectroscopic measurements that there is no appreciable direct communication between metal centers. © 2014, American Chemical Society.en_AU
dc.identifier.citationOvergaard, J., Walsh, J. P. S., Hathwar, V. R., Jørgensen, M. R. V., Hoffman, C., Platts, J. A., Piltz, R., & Winpenny, R. E. P. (2014). Relationships between electron density and magnetic properties in water-bridged dimetal complexes. Inorganic Chemistry, 53(21), 11531-11539. doi:10.1021/ic501411wen_AU
dc.identifier.govdoc7264en_AU
dc.identifier.issn1520-510Xen_AU
dc.identifier.issue21en_AU
dc.identifier.journaltitleInorganic Chemistryen_AU
dc.identifier.pagination11531-11539en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/ic501411wen_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/7702en_AU
dc.identifier.volume53en_AU
dc.language.isoenen_AU
dc.publisherACS Publicationsen_AU
dc.subjectElectron densityen_AU
dc.subjectMetalsen_AU
dc.subjectBondingen_AU
dc.subjectCrystalsen_AU
dc.subjectAtomsen_AU
dc.subjectCarboxylic acidsen_AU
dc.titleRelationships between electron density and magnetic properties in water-bridged dimetal complexesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections