Simulation of light C4+ ion irradiation and its enhancement to the critical current density in BaFe1.9Ni0.1As2 single crystals
dc.contributor.author | Shahbazi, M | en_AU |
dc.contributor.author | Wang, XL | en_AU |
dc.contributor.author | Ionescu, M | en_AU |
dc.contributor.author | Ghorbani, SR | en_AU |
dc.contributor.author | Dou, SX | en_AU |
dc.contributor.author | Choi, KY | en_AU |
dc.date.accessioned | 2020-03-26T00:20:16Z | en_AU |
dc.date.available | 2020-03-26T00:20:16Z | en_AU |
dc.date.issued | 2014-07-01 | en_AU |
dc.date.statistics | 2020-03-20 | en_AU |
dc.description.abstract | In this work, we analyse the influence of C4+ irradiation with ion flounce of 3 × 1012 up to 2.3 × 1015 ion·cm−2 on significant enhancement of the critical current density, Jc , in BaFe1.9Ni0.1As2 single crystals. Jc was increased from 0.61 × 105 up to 0.94 × 105 A/cm2 at T = 10 K and H = 0.5 T. BaFe1.9Ni0.1As2 single crystals with and without the C4+-irradiation were characterized by magneto-transport and magnetic measurements up to 13 T over a wide range of temperatures below and above the superconducting critical temperature, Tc . It is found that the C4+-irradiation causes little change in Tc , but it can greatly enhance the in-field critical current density by a factor of up to 1.5. Higher dose of C4+ ions, causes further Jc enhancement at T=10 K. furthermore, flux jumping completely disappeared at T=2 K after second C4+-irradiation. Our Monte Carlo simulation results show that all the C4+ ions end up in a well defined layer, causing extended defects and vacancies at the layer, but few defects elsewhere on the irradiation paths. Furthermore, the normal state resistivity is enhanced by the light C4+ irradiation, while the upper critical field, H c2, the irreversibility field, H irr, and Tc were affected very little. © 2014 American Scientific Publisher | en_AU |
dc.identifier.citation | Shahbazi, M., Wang, X. L., Ionescu, M., Ghorbani, S. R., Dou, S. X., & Choi, K. Y. (2014). Simulation of light C4+ ion irradiation and its enhancement to the critical current density in BaFe1.9Ni0.1As2 single crystals. Science of Advanced Materials, 6(7), 1650-1654. doi:10.1166/sam.2014.1937 | en_AU |
dc.identifier.govdoc | 8990 | en_AU |
dc.identifier.issn | 1947-2943 | en_AU |
dc.identifier.issue | 7 | en_AU |
dc.identifier.journaltitle | Science of Advanced Materials | en_AU |
dc.identifier.pagination | 1650-1654 | en_AU |
dc.identifier.uri | https://doi.org/10.1166/sam.2014.1937 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/9246 | en_AU |
dc.identifier.volume | 6 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Scientific Publishers | en_AU |
dc.subject | Irradiation | en_AU |
dc.subject | Current density | en_AU |
dc.subject | Crystals | en_AU |
dc.subject | Density | en_AU |
dc.subject | Ions | en_AU |
dc.subject | Temperature range | en_AU |
dc.title | Simulation of light C4+ ion irradiation and its enhancement to the critical current density in BaFe1.9Ni0.1As2 single crystals | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: