Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain

dc.contributor.authorSando, Den_AU
dc.contributor.authorAgbelele, Aen_AU
dc.contributor.authorRahmedov, Den_AU
dc.contributor.authorLiu, Jen_AU
dc.contributor.authorRovillain, Pen_AU
dc.contributor.authorToulouse, Cen_AU
dc.contributor.authorInfante, ICen_AU
dc.contributor.authorPyatakov, APen_AU
dc.contributor.authorFusil, Sen_AU
dc.contributor.authorJacquet, Een_AU
dc.contributor.authorCarrétéro, Cen_AU
dc.contributor.authorDeranlot, Cen_AU
dc.contributor.authorLisenkov, Sen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorLe Breton, JMen_AU
dc.contributor.authorCazayous, Men_AU
dc.contributor.authorSacuto, Aen_AU
dc.contributor.authorJuraszek, Jen_AU
dc.contributor.authorZvezdin, AKen_AU
dc.contributor.authorBellaiche, Len_AU
dc.contributor.authorDkhil, Ben_AU
dc.contributor.authorBarthélémy, Aen_AU
dc.contributor.authorBibes, Men_AU
dc.date.accessioned2015-10-20T00:47:26Zen_AU
dc.date.available2015-10-20T00:47:26Zen_AU
dc.date.issued2013-04-28en_AU
dc.date.statistics2015-10-20en_AU
dc.description.abstractMultiferroics are compounds that show ferroelectricity and magnetism. BiFeO3, by far the most studied, has outstanding ferroelectric properties, a cycloidal magnetic order in the bulk, and many unexpected virtues such as conductive domain walls or a low bandgap of interest for photovoltaics. Although this flurry of properties makes BiFeO3 a paradigmatic multifunctional material, most are related to its ferroelectric character, and its other ferroic property—antiferromagnetism—has not been investigated extensively, especially in thin films. Here we bring insight into the rich spin physics of BiFeO3 in a detailed study of the static and dynamic magnetic response of strain-engineered films. Using Mössbauer and Raman spectroscopies combined with Landau–Ginzburg theory and effective Hamiltonian calculations, we show that the bulk-like cycloidal spin modulation that exists at low compressive strain is driven towards pseudo-collinear antiferromagnetism at high strain, both tensile and compressive. For moderate tensile strain we also predict and observe indications of a new cycloid. Accordingly, we find that the magnonic response is entirely modified, with low-energy magnon modes being suppressed as strain increases. Finally, we reveal that strain progressively drives the average spin angle from in-plane to out-of-plane, a property we use to tune the exchange bias and giant-magnetoresistive response of spin valves. © 2013, Nature Publishing Group.en_AU
dc.identifier.citationSando, D., Agbelele, A., Rahmedov, D., Liu, J., Rovillain, P., Toulouse, C., Infante, I. C., Pyatakov, A. P., Fusil, S., Jacquet, E., Carrétéro, C., Deranlot, C., Lisenkov, S., Wang, D., Le Breton, J. M., Cazayous, M., Sacuto, A., Juraszek, J., Zvezdin, A. K., Bellaiche, L., Dkhil, B., Barthélémy, A., & Bibes, M. (2013). Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nature Materials, 12(7), 641-646. doi:10.1038/nmat3629en_AU
dc.identifier.govdoc6198en_AU
dc.identifier.issn1476-1122en_AU
dc.identifier.issue7en_AU
dc.identifier.journaltitleNature Materialsen_AU
dc.identifier.pagination641-646en_AU
dc.identifier.urihttp://dx.doi.org/10.1038/nmat3629en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/6349en_AU
dc.identifier.volume12en_AU
dc.language.isoenen_AU
dc.publisherNature Publishing Groupen_AU
dc.subjectMagnetic materialsen_AU
dc.subjectMagnetismen_AU
dc.subjectFerroelectric materialsen_AU
dc.subjectTensile propertiesen_AU
dc.subjectPerovskiteen_AU
dc.subjectSpinen_AU
dc.titleCrafting the magnonic and spintronic response of BiFeO3 films by epitaxial strainen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections