Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

dc.contributor.authorvan Noije, TPCen_AU
dc.contributor.authorLe Sager, Pen_AU
dc.contributor.authorSegers, AJen_AU
dc.contributor.authorvan Velthoven, PFJen_AU
dc.contributor.authorKrol, MCen_AU
dc.contributor.authorHazeleger, Wen_AU
dc.contributor.authorWilliams, AGen_AU
dc.contributor.authorChambers, SDen_AU
dc.date.accessioned2016-12-05T23:23:50Zen_AU
dc.date.available2016-12-05T23:23:50Zen_AU
dc.date.issued2014-10-22en_AU
dc.date.statistics2016-12-06en_AU
dc.description.abstractWe have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.© 2014, Author(s).en_AU
dc.identifier.citationVan Noije, T. P. C., Le Sager, P., Segers, A. J., Van Velthoven, P. F. J., Krol, M. C., Hazeleger, W., Williams, A. G. & Chambers, S. D. (2014). Simulation of tropospheric chemistry and aerosols with the climate model EC-earth. Geoscientific Model Development, 7(5), 2435-2475. doi:10.5194/gmd-7-2435-2014en_AU
dc.identifier.govdoc7662en_AU
dc.identifier.issn2435-2475en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleGeoscientific Model Developmenten_AU
dc.identifier.pagination2435–2475en_AU
dc.identifier.urihttps://doi.org/10.5194/gmd-7-2435-2014en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/8118en_AU
dc.identifier.volume7en_AU
dc.language.isoenen_AU
dc.publisherCopernicus Publicationsen_AU
dc.subjectAtmospheric chemistryen_AU
dc.subjectClimate modelsen_AU
dc.subjectAerosolsen_AU
dc.subjectTroposphereen_AU
dc.subjectSimulationen_AU
dc.subjectRadon 222en_AU
dc.subjectCarbon monoxideen_AU
dc.subjectOzoneen_AU
dc.titleSimulation of tropospheric chemistry and aerosols with the climate model EC-Earthen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gmd-7-2435-2014.pdf
Size:
15.65 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections