Large celestine orebodies formed by early-diagenetic replacement of gypsified stromatolites (Upper Miocene, Montevive–Escúzar deposit, Granada Basin, Spain)

dc.contributor.authorGarcía-Veigas, Jen_AU
dc.contributor.authorRosell, Len_AU
dc.contributor.authorCendón, DIen_AU
dc.contributor.authorGilbert, Len_AU
dc.contributor.authorMartín, JMen_AU
dc.contributor.authorTorres-Ruiz, Jen_AU
dc.contributor.authorOrtí, Fen_AU
dc.date.accessioned2016-08-14T23:28:49Zen_AU
dc.date.available2016-08-14T23:28:49Zen_AU
dc.date.issued2015-01-01en_AU
dc.date.statistics2016-08-15en_AU
dc.description.abstractThe Montevive and the Escúzar stratabound celestine orebodies in the Upper Miocene evaporite succession of the intramontane Granada Basin (Spain) constitute one of the largest strontium deposits in the world. Celestine occurs within a gypsum/anhydrite–halite evaporite sequence where it replaces gypsum and gypsified stromatolites preserving carbonate peloids. 87Sr/86Sr and δ34S values in the Montevive celestine deposit are close to those reported for the saline unit (Chimeneas Halite; marine to nonmarine) but higher than those of the overlying gypsum unit (Agrón Gypsum; nonmarine). 87Sr/86Sr and δ34S isotope values in the Escúzar celestine deposit match the nonmarine values recorded in the upper part of the Agrón Gypsum. The similarity in isotope values between celestine and the corresponding gypsum host in the Escúzar deposit points to early-diagenetic mineralization. According to that, both orebodies are diachronous. Gypsum pseudomorphs and molds, intraformational breccias and karst structures in these celestine deposits point to dissolved gypsum as the main sulfate source. Diagenetic–hydrothermal CaCl2 brines are interpreted to be the main strontium source. The spatial relationship between gypsified stromatolites and the ore deposits suggests the existence of coeval thermal springs related to fractures, bordering the saline lake. The proposed model envisages gypsum dissolution by SO42 −-poor and Sr2 +-rich, CaCl2 diagenetic–hydrothermal water discharging in coastal ponds at times of dry periods and low meteoric water inflow. The increase in SO42 − concentration by gypsum dissolution and the low solubility of SrSO4 would lead to celestine precipitation replacing gypsum and gypsified stromatolites. © 2014 Elsevier B.V.en_AU
dc.identifier.citationGarcia-Veigas, J., Rosell, L., Cendon, D. I., Gibert, L., Martín, J. M., Torres-Ruiz, J., & Ortí, F. (2015). Large celestine orebodies formed by early-diagenetic replacement of gypsified stromatolites (Upper Miocene, Montevive–Escúzar deposit, Granada Basin, Spain). Ore Geology Reviews, 64, 187-199. doi:10.1016/j.oregeorev.2014.07.009en_AU
dc.identifier.govdoc6940en_AU
dc.identifier.issn0169-1368en_AU
dc.identifier.journaltitleOre Geology Reviewsen_AU
dc.identifier.pagination187-199en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.oregeorev.2014.07.009en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/7298en_AU
dc.identifier.volume64en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectCelestin reactoren_AU
dc.subjectEvaporitesen_AU
dc.subjectSulfatesen_AU
dc.subjectIsotopesen_AU
dc.subjectMiocene epochen_AU
dc.subjectSedimentsen_AU
dc.titleLarge celestine orebodies formed by early-diagenetic replacement of gypsified stromatolites (Upper Miocene, Montevive–Escúzar deposit, Granada Basin, Spain)en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections