Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: characterising the atmospheric mixing state

dc.contributor.authorChambers, SDen_AU
dc.contributor.authorGaleriu, Den_AU
dc.contributor.authorWilliams, AGen_AU
dc.contributor.authorMelintescu, Aen_AU
dc.contributor.authorGriffiths, ADen_AU
dc.contributor.authorCrawford, Jen_AU
dc.contributor.authorDyer, LLen_AU
dc.contributor.authorDuma, Men_AU
dc.contributor.authorZorila, Ben_AU
dc.date.accessioned2016-03-10T00:06:15Zen_AU
dc.date.available2016-03-10T00:06:15Zen_AU
dc.date.issued2016-04-01en_AU
dc.date.statistics2016-03-10en_AU
dc.description.abstractA radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill–Gifford “radiation” scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s−1 and nocturnal mixing depths vary from ∼25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500–900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m−2 s−1 in winter to 14 mBq m−2 s−1 in summer. © 2016, Elsevier Ltd.en_AU
dc.identifier.citationChambers, S. D., Galeriu, D., Williams, A. G., Melintescu, A., Griffiths, A. D., Crawford, J., Dyer, L., Duma, M., & Zorila, B. (2016). Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. Journal of Environmental Radioactivity, 154, 68-82. doi:10.1016/j.jenvrad.2016.01.010en_AU
dc.identifier.govdoc6507en_AU
dc.identifier.issn0265-931Xen_AU
dc.identifier.journaltitleJournal of Environmental Radioactivityen_AU
dc.identifier.pagination68-82en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.jenvrad.2016.01.010en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/6618en_AU
dc.identifier.volume154en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectAtmosphericsen_AU
dc.subjectRadiologyen_AU
dc.subjectRomaniaen_AU
dc.subjectTritiumen_AU
dc.subjectRadonen_AU
dc.titleAtmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: characterising the atmospheric mixing stateen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections