Optimization of nucleophilic 18F radiofluorinations using a microfluidic reaction approach

dc.contributor.authorPascali, Gen_AU
dc.contributor.authorMatesic, Len_AU
dc.contributor.authorCollier, TLen_AU
dc.contributor.authorWyatt, NAen_AU
dc.contributor.authorFraser, BHen_AU
dc.contributor.authorPham, TQen_AU
dc.contributor.authorSalvadori, PAen_AU
dc.contributor.authorGueguric, Ien_AU
dc.date.accessioned2020-03-23T23:52:09Zen_AU
dc.date.available2020-03-23T23:52:09Zen_AU
dc.date.issued2014-07-31en_AU
dc.date.statistics2020-03-11en_AU
dc.description.abstractMicrofluidic techniques are increasingly being used to synthesize positron-emitting radiopharmaceuticals. Several reports demonstrate higher incorporation yields, with shorter reaction times and reduced amounts of reagents compared with traditional vessel-based techniques. Microfluidic techniques, therefore, have tremendous potential for allowing rapid and cost-effective optimization of new radiotracers. This protocol describes the implementation of a suitable microfluidic process to optimize classical 18F radiofluorination reactions by rationalizing the time and reagents used. Reaction optimization varies depending on the systems used, and it typically involves 5–10 experimental days of up to 4 h of sample collection and analysis. In particular, the protocol allows optimization of the key fluidic parameters in the first tier of experiments: reaction temperature, residence time and reagent ratio. Other parameters, such as solvent, activating agent and precursor concentration need to be stated before the experimental runs. Once the optimal set of parameters is found, repeatability and scalability are also tested in the second tier of experiments. This protocol allows the standardization of a microfluidic methodology that could be applied in any radiochemistry laboratory, in order to enable rapid and efficient radiosynthesis of new and existing [18F]-radiotracers. Here we show how this method can be applied to the radiofluorination optimization of ​[18F]-MEL050, a melanoma tumor imaging agent. This approach, if integrated into a good manufacturing practice (GMP) framework, could result in the reduction of materials and the time required to bring new radiotracers toward preclinical and clinical applications. © 2014, Nature Publishing Groupen_AU
dc.identifier.citationPascali, G., Matesic, L., Collier, T. L., Wyatt, N., Fraser, B. H., Pham, T. Q., Salvadori, P. A., & Greguric, I. (2014). Optimization of nucleophilic 18F radiofluorinations using a microfluidic reaction approach. Nature Protocols, 9(9), 2017-2029. doi:10.1038/nprot.2014.137en_AU
dc.identifier.govdoc8843en_AU
dc.identifier.issn1750-2799en_AU
dc.identifier.issue9en_AU
dc.identifier.journaltitleNature Protocolsen_AU
dc.identifier.pagination2017-2029en_AU
dc.identifier.urihttps://doi.org/10.1038/nprot.2014.137en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/9200en_AU
dc.identifier.volume9en_AU
dc.language.isoenen_AU
dc.publisherNature Publishing Groupen_AU
dc.subjectFluidsen_AU
dc.subjectSynthesisen_AU
dc.subjectPositron reactionsen_AU
dc.subjectRadiopharmaceuticalsen_AU
dc.subjectReagentsen_AU
dc.subjectExperiment resultsen_AU
dc.subjectNeoplasmsen_AU
dc.subjectTracer techniquesen_AU
dc.titleOptimization of nucleophilic 18F radiofluorinations using a microfluidic reaction approachen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections