Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interface

dc.contributor.authorBuljan, VAen_AU
dc.contributor.authorHolsinger, RMDen_AU
dc.contributor.authorHambly, BDen_AU
dc.contributor.authorBanati, RBen_AU
dc.contributor.authorIvanova, EPen_AU
dc.date.accessioned2020-03-12T00:57:57Zen_AU
dc.date.available2020-03-12T00:57:57Zen_AU
dc.date.issued2012-10-18en_AU
dc.date.statistics2020-03-11en_AU
dc.description.abstractIn order to quantify the intrinsic dynamics associated with the tip of a GTP-cap under semi-confined conditions, such as those within a neuronal cone and at a kinetochore–microtubule interface, we propose a novel quantitative concept of critical nano local GTP-tubulin concentration (CNLC). A simulation of a rate constant of GTP-tubulin hydrolysis, under varying conditions based on this concept, generates results in the range of 0-420 s−1. These results are in agreement with published experimental data, validating our model. The major outcome of this model is the prediction of 11 random and distinct outbursts of GTP hydrolysis per single layer of a GTP-cap. GTP hydrolysis is accompanied by an energy release and the formation of discrete expanding zones, built by less-stable, skewed GDP-tubulin subunits. We suggest that the front of these expanding zones within the walls of the microtubule represent soliton-like movements of local deformation triggered by energy released from an outburst of hydrolysis. We propose that these solitons might be helpful in addressing a long-standing question relating to the mechanism underlying how GTP-tubulin hydrolysis controls dynamic instability. This result strongly supports the prediction that large conformational movements in tubulin subunits, termed dynamic transitions, occur as a result of the conversion of chemical energy that is triggered by GTP hydrolysis (Satarić et al., Electromagn Biol Med 24:255–264, 2005). Although simple, the concept of CNLC enables the formulation of a rationale to explain the intrinsic nature of the “push-and-pull” mechanism associated with a kinetochore–microtubule complex. In addition, the capacity of the microtubule wall to produce and mediate localized spatio-temporal excitations, i.e., soliton-like bursts of energy coupled with an abundance of microtubules in dendritic spines supports the hypothesis that microtubule dynamics may underlie neural information processing including neurocomputation. © 2012, Springer Natureen_AU
dc.identifier.citationBuljan, V. A., Holsinger, R. M. D., Hambly, B. D., Banati, R. B., & Ivanova, E. P. (2013). Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interface. Journal of Biological Physics, 39(1), 81-98. doi:10.1007/s10867-012-9287-3en_AU
dc.identifier.govdoc8687en_AU
dc.identifier.issn1573-0689en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleJournal of Biological Physicsen_AU
dc.identifier.pagination81-98en_AU
dc.identifier.urihttp://doi.org/10.1007/s10867-012-9287-3en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/9142en_AU
dc.identifier.volume39en_AU
dc.language.isoenen_AU
dc.publisherSpringer Natureen_AU
dc.subjectMicrotubulesen_AU
dc.subjectHydrolysisen_AU
dc.subjectAneuploidyen_AU
dc.subjectInteractionsen_AU
dc.subjectCarcinogenesisen_AU
dc.subjectBifurcationen_AU
dc.titleIntrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interfaceen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections