Chemical and isotopic signatures of waters associated with the carbonation of ultramafic mine tailings, Woodsreef Asbestos Mine, Australia

dc.contributor.authorOskierski, HCen_AU
dc.contributor.authorDlugogorski, BZen_AU
dc.contributor.authorOliver, TKen_AU
dc.contributor.authorJacobsen, GEen_AU
dc.date.accessioned2017-06-21T01:58:15Zen_AU
dc.date.available2017-06-21T01:58:15Zen_AU
dc.date.issued2016-10-15en_AU
dc.date.statistics2017-06-21en_AU
dc.description.abstractExtensive carbonate crusts have formed on the tailings of the Woodsreef Asbestos Mine, sequestering significant amounts of CO2 directly from the atmosphere. The physico-chemical (pH, T, conductivity), chemical (cations, dissolved inorganic carbon (DIC)) and isotopic (δ2H, δ18O, δ13CDIC, F14C) signatures of waters interacting with the tailings and associated carbonate precipitates provide insight into the processes controlling carbonation. We observe two distinct evolutionary pathways for a set of stream and meteoric-derived water samples, respectively, with both groups generally being characterised as moderately alkaline, bicarbonate-dominated and Mg-rich waters. Stream water samples are supersaturated with CO2 and therefore prone to degassing, which, in combination with evaporation, drives carbonate supersaturation and precipitation. Isotopic signatures indicate soil CO2 as the main carbon source in the stream waters entering the tailings pile, whereas water emerging downstream of the tailings pile may also contain carbon from the dissolution of isotopically light bedrock magnesite in an open system with respect to soil CO2. The evolution of meteoric-derived waters on the other hand, partly occurs under CO2-limited conditions, which results from reduced CO2 ingress at depth and/or a temporal lag between fluid alkalisation and kinetically hindered uptake of CO2 into alkaline solution. A high pH, Mg-rich meteoric water absorbs atmospheric CO2 after discharging into a tunnel within the tailings pile, resulting in high DIC concentrations with atmospheric carbon isotope signature. Evaporation of the water at the discharge point in the tunnel drives precipitation of hydromagnesite (Mg5(CO3)4(OH)2·4H2O), displaying a clear atmospheric isotope signature, broadly consistent with previous estimates of carbon and oxygen isotope fractionation during precipitation of hydrated Mg-carbonate. © 2016, Elsevier B.V.en_AU
dc.identifier.citationOskierski, H. C., et al. (2016). Chemical and isotopic signatures of waters associated with the carbonation of ultramafic mine tailings, Woodsreef Asbestos Mine, Australia. Chemical Geology, 436: 11-23. doi:10.1016/j.chemgeo.2016.04.014en_AU
dc.identifier.govdoc8256en_AU
dc.identifier.issn0009-2541en_AU
dc.identifier.journaltitleChemical Geologyen_AU
dc.identifier.pagination11-13en_AU
dc.identifier.urihttps://doi.org/10.1016/j.chemgeo.2016.04.014en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/8758en_AU
dc.identifier.volume436en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectSerpentinitesen_AU
dc.subjectEvaporationen_AU
dc.subjectCarbonatesen_AU
dc.subjectAcid neutralizing capacityen_AU
dc.subjectStreamsen_AU
dc.subjectCarbon isotopesen_AU
dc.titleChemical and isotopic signatures of waters associated with the carbonation of ultramafic mine tailings, Woodsreef Asbestos Mine, Australiaen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections