Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate
dc.contributor.author | Shoko, E | en_AU |
dc.contributor.author | Kearley, GJ | en_AU |
dc.contributor.author | Peterson, VK | en_AU |
dc.contributor.author | Mutka, H | en_AU |
dc.contributor.author | Koza, MM | en_AU |
dc.contributor.author | Yamaura, J | en_AU |
dc.contributor.author | Hiroi, Z | en_AU |
dc.contributor.author | Thorogood, GJ | en_AU |
dc.date.accessioned | 2016-10-26T03:39:45Z | en_AU |
dc.date.available | 2016-10-26T03:39:45Z | en_AU |
dc.date.issued | 2014-07-04 | en_AU |
dc.date.statistics | 2016-10-26 | en_AU |
dc.description.abstract | Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl0.33W1.67O6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs2O6 and RbOs2O6. Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials. © 2014, IOP Publishing Ltd. | en_AU |
dc.identifier.citation | Shoko, E., Kearley, G. J., Peterson, V. K., Mutka, H., Koza, M. M., Yamaura, J., Hiooi, Z., & Thorogood, G. J. (2014). Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate. Journal of Physics: Condensed Matter, 26(30), 5401-5401. doi:10.1088/0953-8984/26/30/305401 | en_AU |
dc.identifier.govdoc | 7442 | en_AU |
dc.identifier.issn | 1361-648X | en_AU |
dc.identifier.issue | 30 | en_AU |
dc.identifier.journaltitle | Journal of Physics: Condensed Matter | en_AU |
dc.identifier.pagination | 5401 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1088/0953-8984/26/30/305401 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/7906 | en_AU |
dc.identifier.volume | 26 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | IOP Science | en_AU |
dc.subject | Pyrochlore | en_AU |
dc.subject | Aluminium | en_AU |
dc.subject | Superconductivity | en_AU |
dc.subject | Atoms | en_AU |
dc.subject | Phonons | en_AU |
dc.subject | Thermoelectric materials | en_AU |
dc.title | Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: