Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

dc.contributor.authorBuljan, VAen_AU
dc.contributor.authorHolsinger, RMDen_AU
dc.contributor.authorHambly, BDen_AU
dc.contributor.authorKanellis, VGen_AU
dc.contributor.authorMatar, Een_AU
dc.contributor.authorLarkin, Xen_AU
dc.contributor.authorLiu, GJen_AU
dc.contributor.authorBohorquez-Florez, JJen_AU
dc.contributor.authorBanati, RBen_AU
dc.date.accessioned2020-03-23T23:55:29Zen_AU
dc.date.available2020-03-23T23:55:29Zen_AU
dc.date.issued2014-12-04en_AU
dc.date.statistics2020-03-20en_AU
dc.description.abstractBackground In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro, which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions. Methods We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length. Results We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules. Conclusion Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis. © 2014 Authorsen_AU
dc.identifier.citationBuljan, V. A., Holsinger, R. M. D., Hambly, B. D., Kanellis, V., Matar, E., Larkin, X. Liu, G. J., Bohorquez-Florez, J. J. & Banati, R. B. (2014). Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization. EPJ Nonlinear Biomedical Physics, 2(1), 15. doi:10.1140/epjnbp/s40366-014-0015-8en_AU
dc.identifier.govdoc8688en_AU
dc.identifier.issn2195-0008en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleEPJ Nonlinear Biomedical Physicsen_AU
dc.identifier.pagination15en_AU
dc.identifier.urihttps://doi.org/10.1140/epjnbp/s40366-014-0015-8en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/9209en_AU
dc.identifier.volume2en_AU
dc.language.isoenen_AU
dc.publisherBioMed Central Ltden_AU
dc.subjectSynergismen_AU
dc.subjectMicrotubulesen_AU
dc.subjectElectron microscopyen_AU
dc.subjectCalculation methodsen_AU
dc.subjectFibersen_AU
dc.subjectIn vitroen_AU
dc.titleIntrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organizationen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
document.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections