In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film

dc.contributor.authorReichardt, Aen_AU
dc.contributor.authorIonescu, Men_AU
dc.contributor.authorDavis, Jen_AU
dc.contributor.authorEdwards, Len_AU
dc.contributor.authorHarrison, RPen_AU
dc.contributor.authorHosemann, Pen_AU
dc.contributor.authorBhattacharyya, Den_AU
dc.date.accessioned2020-03-29T19:21:36Zen_AU
dc.date.available2020-03-29T19:21:36Zen_AU
dc.date.issued2015-11-01en_AU
dc.date.statistics2020-03-20en_AU
dc.description.abstractThe effect of ion irradiation on the tensile properties of pure Ni single crystals was investigated using an in situ micro-mechanical testing device inside a scanning electron microscope. A 12.8 μm-thick Ni film with {0 0 1} plane normal was irradiated with 6 MeV He+2 ions to peak damage of 10 and 19 displacements per atom (dpa). Micro-tensile samples were fabricated from the specimens parallel to the plane of the film using a focused ion beam (FIB) instrument, and tested in tension along [1 0 0] direction, up to fracture. The peak strength increased from ∼230 MPa for the unirradiated material to about 370 MPa and 500 MPa for the 10 dpa and 19 dpa samples respectively, while the ductility decreased with increasing dose. The surface near the peak damage regions fractured in a brittle manner, while the regions with smaller dose underwent significant plastic deformation. Slip bands extended to the peak-damage zone in the sample with a dose of 19 dpa, but did not propagate further. Transmission electron microscopy confirmed the stopping of the slip bands at the peak-damage region, just before the high He concentration region with voids or bubbles. By removing the peak damage region and the He bubble region with FIB, it was possible to attain propagation of slip bands through the entire remaining thickness of the sample. This material removal also made it possible to calculate the irradiation hardening in the region with peak hardness – thus enabling the separation of hardening effects in the high and low damage regions. © 2015 Elsevier Ltd.en_AU
dc.identifier.citationReichardt, A., Ionescu, M., Davis, J., Edwards, L., Harrison, R. P., Hosemann, P., & Bhattacharyya, D. (2015). In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Materialia, 100, 147-154. doi:10.1016/j.actamat.2015.08.028en_AU
dc.identifier.govdoc8483en_AU
dc.identifier.issn1359-6454en_AU
dc.identifier.journaltitleActa Materialiaen_AU
dc.identifier.pagination147-154en_AU
dc.identifier.urihttps://doi.org/10.1016/j.actamat.2015.08.028en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/9279en_AU
dc.identifier.volume100en_AU
dc.language.isoenen_AU
dc.publisherElsevier B.V.en_AU
dc.subjectMechanical testsen_AU
dc.subjectIrradiationen_AU
dc.subjectHardeningen_AU
dc.subjectRadiation hardeningen_AU
dc.subjectScanning electron microscopyen_AU
dc.subjectTransmission electron microscopyen_AU
dc.subjectIonsen_AU
dc.subjectNuclear power plantsen_AU
dc.titleIn situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel filmen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections