Depth-resolved structural and compositional characterization of ion-implanted polystyrene that enables direct covalent immobilization of biomolecules

dc.contributor.authorBilek, MMMen_AU
dc.contributor.authorKondyurin, Aen_AU
dc.contributor.authorStephen, Den_AU
dc.contributor.authorSteel, BCen_AU
dc.contributor.authorWilhelm, RAen_AU
dc.contributor.authorRené Heller, Ren_AU
dc.contributor.authorMcKenzie, DRen_AU
dc.contributor.authorWeiss, ASen_AU
dc.contributor.authorJames, Men_AU
dc.contributor.authorMöller, Wen_AU
dc.date.accessioned2017-05-10T01:30:09Zen_AU
dc.date.available2017-05-10T01:30:09Zen_AU
dc.date.issued2015-06-03en_AU
dc.date.statistics2017-05-10en_AU
dc.description.abstractA polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding. © 2015, American Chemical Society.en_AU
dc.identifier.citationBilek, M. M. M., Kondyurin, A., Dekker, S., Steel, B.C., Wilhelm, R. A., Heller, R., McKenzie, D. R., Weiss, A. D., James, M., & Möller, W. (2015). Depth-resolved structural and compositional characterization of ion-implanted polystyrene that enables direct covalent immobilization of biomolecules. The Journal of Physical Chemistry C, 119(29), 16793-16803. doi:10.1021/acs.jpcc.5b05164en_AU
dc.identifier.govdoc8184en_AU
dc.identifier.issn1932-7455en_AU
dc.identifier.issue29en_AU
dc.identifier.journaltitleThe Journal of Physical Chemistry Cen_AU
dc.identifier.pagination16793-16803en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/acs.jpcc.5b05164en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/8688en_AU
dc.identifier.volume119en_AU
dc.language.isoenen_AU
dc.publisherSpringer Linken_AU
dc.subjectPolystyreneen_AU
dc.subjectSiliconen_AU
dc.subjectPlasmaen_AU
dc.subjectRaman spectroscopyen_AU
dc.subjectIonsen_AU
dc.subjectMoleculesen_AU
dc.titleDepth-resolved structural and compositional characterization of ion-implanted polystyrene that enables direct covalent immobilization of biomoleculesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections