Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein rec1-resilin
dc.contributor.author | Balu, R | en_AU |
dc.contributor.author | Knott, RB | en_AU |
dc.contributor.author | Cowieson, NP | en_AU |
dc.contributor.author | Elvin, CM | en_AU |
dc.contributor.author | Hill, AJ | en_AU |
dc.contributor.author | Choudhury, NR | en_AU |
dc.contributor.author | Dutta, NK | en_AU |
dc.date.accessioned | 2020-03-29T22:55:39Z | en_AU |
dc.date.available | 2020-03-29T22:55:39Z | en_AU |
dc.date.issued | 2015-06-04 | en_AU |
dc.date.statistics | 2017-04-24 | en_AU |
dc.description.abstract | Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. © 2017 Macmillan Publishers Limited, part of Springer Nature | en_AU |
dc.identifier.articlenumber | 10896 | en_AU |
dc.identifier.citation | Balu, R., Knott, R., Cowieson, N. P., Elvin, C. M., Hill, A. J., Choudhury, N. R., & Dutta, N. K. (2015). Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein rec1-resilin. Scientific Reports, 5. doi:10.1038/srep10896 | en_AU |
dc.identifier.govdoc | 8123 | en_AU |
dc.identifier.issn | 2045-2322 | en_AU |
dc.identifier.journaltitle | Scientific Reports | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1038/srep10896 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/9294 | en_AU |
dc.identifier.volume | 5 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Springer Nature | en_AU |
dc.subject | Polymers | en_AU |
dc.subject | Aqueous solutions | en_AU |
dc.subject | Proteins | en_AU |
dc.subject | Elasticity | en_AU |
dc.subject | Genes | en_AU |
dc.subject | Diagnosis | en_AU |
dc.subject | Spectroscopy | en_AU |
dc.subject | Small angle scattering | en_AU |
dc.subject | X-ray spectroscopy | en_AU |
dc.subject | Drosophila | en_AU |
dc.subject | Fruit flies | en_AU |
dc.title | Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein rec1-resilin | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: