Local microstructure evolution of local microstructure evolution of bismuth sodium titanate-based lead-free piezoelectric systems across the morphotropic phase boundary region
No Thumbnail Available
Date
2012-09-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific Publishing Co
Abstract
Morphotropic phase boundary (MPB) containing piezoelectric systems generally exhibit enhanced piezoelectric performance at compositions within, or close to, the MPB region. The mechanism/s underlying such enhancement, however, are still contentious due to complex micro/nanostructure and apparently inherent local structural variability associated with octahedral tilt disorder/platelet precipitates in such piezoelectric materials. This paper reviews some recent structural analysis results from Bi0.5Na0.5TiO3 (BNT) and other binary, lead-free, piezoelectric materials systems derived from it via electron diffraction and in situ neutron diffraction. The results suggest that intrinsically existing local microstructure (LMS) in BNT essentially continues across the MPB region. The LMS, originating from inherent octahedral tilt disorder, is strongly temperature-, electric field-, pressure- and chemical composition-dependent, and may help to explain a series of phenomena observed in BNT-based binary materials systems, including the enhanced piezoelectric effect in the region of the MPB. © 2012 World Scientific Publishing Co.
Description
Keywords
Electron diffraction, Bismuth, Sodium, Titanium, Barium, Oxygen
Citation
Liu, Y., Withers, R. L., Wang, J., Norén, L., Studer, A .J., & Li, Y. (2012). Local microstructure evolution of bismuth sodium titanate-based lead-free piezoelectric systems across the morphotropic phase boundary region. Journal of Advanced Dielectrics, 02(04), 1230012. doi:10.1142/S2010135X12300125