Ti substitution for Mn in MnCoGe - the magnetism of Mn0.9Ti0.1CoGe

dc.contributor.authorWang, JLen_AU
dc.contributor.authorShamba, Pen_AU
dc.contributor.authorHutchison, WDen_AU
dc.contributor.authorDin, MFMen_AU
dc.contributor.authorDebnath, JCen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorZeng, Ren_AU
dc.contributor.authorKennedy, SJen_AU
dc.contributor.authorCampbell, SJen_AU
dc.contributor.authorDou, SXen_AU
dc.date.accessioned2013-11-20T04:40:01Zen_AU
dc.date.available2013-11-20T04:40:01Zen_AU
dc.date.issued2013-11-15en_AU
dc.date.statistics2013-11-20en_AU
dc.description.abstractBulk magnetization measurements (5–320 K; 0–8 T) reveal that below room temperature Mn0.9Ti0.1CoGe exhibits two magnetic phase transitions at ∼178 K and ∼280 K. Neutron diffraction measurements (3–350 K) confirm that the transition at ∼178 K is due to the structural change from the low-temperature orthorhombic TiNiSi-type structure (space group Pnma) to the higher temperature hexagonal Ni2In-type structure (space group P63/mmc), while the transition at ∼280 K originates from the transition from ferromagnetism to paramagnetism. The magnetocaloric behaviour of Mn0.9Ti0.1CoGe around Tstr ∼ 178 K and TC ∼ 280 K as determined via the magnetic field and temperature dependences of DC magnetisation are given by the maximum values of the magnetic entropy changes −Δ S M max = 6.6 J kg−1 K−1 around Tstr ∼ 178 K, and −Δ S M max = 4.2 J kg−1 K−1 around TC ∼ 280 K for a magnetic field change of ΔB = 0–8 T. Both structural entropy – due to the unit cell expansion of ∼4.04% – and magnetic entropy – due to an increase in the magnetic moment of ∼31% – are found to contribute significantly to the total entropy change around Tstr. Critical analysis of the transition around TC ∼ 280 K leads to exponents similar to values derived from a mean field theory, consistent with long-range ferromagnetic interactions. It was found that the field dependence of −Δ S M max can be expressed as −Δ S M max ∝ Bn with n = 1 for the structural transition around Tstr and n = 2/3 for the ferromagnetic transition around TC, thereby confirming the second order nature of this latter transition.© 2013, Elsevier Ltd.en_AU
dc.identifier.citationWang, J. L., Shamba, P., Hutchison, W. D., Md Din, M. F., Debnath, J. C., Avdeev, M., Zeng, R., Kennedy, S. J., Campbell, S. J., & Dou, S. X.(2013). Ti substitution for Mn in MnCoGe - the magnetism of Mn0.9Ti0.1CoGe. Journal of Alloys and Compounds, 577, 475-479. doi:10.1016/j.jallcom.2013.06.134en_AU
dc.identifier.govdoc5072en_AU
dc.identifier.issn0925-8388en_AU
dc.identifier.journaltitleJournal of Alloys and Compoundsen_AU
dc.identifier.pagination475-479en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.jallcom.2013.06.134en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/4986en_AU
dc.identifier.volume577en_AU
dc.language.isoenen_AU
dc.publisherElsevier Scienceen_AU
dc.subjectNeutronsen_AU
dc.subjectDiffractionen_AU
dc.subjectManganeseen_AU
dc.subjectCobalten_AU
dc.subjectGermaniumen_AU
dc.subjectThalliumen_AU
dc.titleTi substitution for Mn in MnCoGe - the magnetism of Mn0.9Ti0.1CoGeen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections