A multilayered approach to polyfluorene water-based organic photovoltaics

dc.contributor.authorStapleton, Aen_AU
dc.contributor.authorVaughan, Ben_AU
dc.contributor.authorXue, BFen_AU
dc.contributor.authorSesa, Een_AU
dc.contributor.authorBurke, Ken_AU
dc.contributor.authorZhou, XJen_AU
dc.contributor.authorBryant, Gen_AU
dc.contributor.authorWerzer, Oen_AU
dc.contributor.authorNelson, Aen_AU
dc.contributor.authorKilcoyne, ALDen_AU
dc.contributor.authorThomsen, Len_AU
dc.contributor.authorWanless, Een_AU
dc.contributor.authorBelcher, Wen_AU
dc.contributor.authorDastoor, Pen_AU
dc.date.accessioned2014-04-11T05:12:08Zen_AU
dc.date.available2014-04-11T05:12:08Zen_AU
dc.date.issued2012-07-01en_AU
dc.date.statistics2014-04-11en_AU
dc.description.abstractWater-based polymer nanoparticle dispersions offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic (OPV) devices; namely how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. However, to date, the efficiencies of nanoparticulate-based devices have been inferior to that of the corresponding bulk-heterojunction devices. Here we present an approach for producing optimised OPV devices from polymer nanoparticles via the fabrication of multilayered device architectures. We show that by controlling both nanoparticle morphology and inter-particle interactions it is now possible to build polyfluorene OPV devices from aqueous dispersions of nanoparticles that are more efficient than the corresponding bulk heterojunction devices. In particular we show that: (1) the polyfluorene nanoparticle morphology is suited to effective charge separation, (2) thermal treatment of the deposited layers results in improved interparticle connectivity and effective charge transport, and (3) the optimal device thickness is a delicate balance between the repair of layer defects and the creation of stress cracking in the nanoparticulate film. As such, this work offers insights for the development of printable photovoltaic devices based on water-dispersed nanoparticulate formulations. © 2012, Elsevier Ltd.en_AU
dc.identifier.citationStapleton, A., Vaughan, B., Xue, B. F., Sesa, E., Burke, K., Zhou, X. J., Bryant, G., Werzer, O., Nelson, A., Kilcoyne, A. L. D., Thomsen, L., Wanless, E., Belcher, W., & Dastoor, P. (2012). A multilayered approach to polyfluorene water-based organic photovoltaics. Solar Energy Materials and Solar Cells, 102, 114-124. doi:10.1016/j.solmat.2012.03.016en_AU
dc.identifier.govdoc4665en_AU
dc.identifier.issn0927-0248en_AU
dc.identifier.journaltitleSolar Energy Materials and Solar Cellsen_AU
dc.identifier.pagination114-124en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.solmat.2012.03.016en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/5422en_AU
dc.identifier.volume102en_AU
dc.language.isoenen_AU
dc.publisherElsevier Science BVen_AU
dc.subjectSolar cellsen_AU
dc.subjectMorphologyen_AU
dc.subjectPolymersen_AU
dc.subjectAqueous solutionsen_AU
dc.subjectPerformanceen_AU
dc.subjectEquipmenten_AU
dc.titleA multilayered approach to polyfluorene water-based organic photovoltaicsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections