Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics

dc.contributor.authorStadler, AMen_AU
dc.contributor.authorGarvey, CJen_AU
dc.contributor.authorBocahut, Aen_AU
dc.contributor.authorSacquin-Mora, Sen_AU
dc.contributor.authorDigel, Ien_AU
dc.contributor.authorSchneider, GJen_AU
dc.contributor.authorNatali, Fen_AU
dc.contributor.authorArtmann, GMen_AU
dc.contributor.authorZaccai, Gen_AU
dc.date.accessioned2014-03-28T04:14:05Zen_AU
dc.date.available2014-03-28T04:14:05Zen_AU
dc.date.issued2012-11-07en_AU
dc.date.statistics2014-03-28en_AU
dc.description.abstractThermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. Copyright © The Royal Society 2012.en_AU
dc.identifier.citationStadler, A. M., Garvey, C. J., Bocahut, A., Sacquin-Mora, S., Digel, I., Schneider, G. J., Natali, F., Artmann, G. M., & Zaccai, G. (2012). Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Journal of the Royal Society Interface, 9(76), 2845-2855. doi:10.1098/rsif.2012.0364en_AU
dc.identifier.govdoc4593en_AU
dc.identifier.issn1742-5689en_AU
dc.identifier.issue76en_AU
dc.identifier.journaltitleJournal of the Royal Society Interfaceen_AU
dc.identifier.pagination2845-2855en_AU
dc.identifier.urihttp://dx.doi.org/10.1098/rsif.2012.0364en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/5340en_AU
dc.identifier.volume9en_AU
dc.language.isoenen_AU
dc.publisherThe Royal Societyen_AU
dc.subjectBody temperatureen_AU
dc.subjectThermodynamicsen_AU
dc.subjectProteinsen_AU
dc.subjectNeutronsen_AU
dc.subjectBlood cellsen_AU
dc.subjectMechanical propertiesen_AU
dc.titleThermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamicsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections