Neutron scattering study of ionic diffusion in Cu–Se superionic compounds

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Elsevier Science BV
Paper reports the results of the neutron scattering study of crystal structure and diffusion of Cu2 − δSe compounds in superionic α-phase. We found that the crystallographic model with Cu atoms in the 8c (0.25, 0.25, 0.25) and 32f (x, x, x) (x = 0.33–0.39) sites in fluorite lattice provides the best description of the average structure. The quasi-elastic neutron scattering data reveal the decrease of the self-diffusion coefficient with the deviation from the stoichiometry due to the longer residence time of Cu atoms between diffusion hops. Combination of neutron diffraction, quasi-elastic scattering experimental data with the Bond-Valence Method simulations strongly suggests that the Cu atoms diffuse between the nearest 8c sites through the 32f sites. © 2012, Elsevier Ltd.
Ionic conductivity, Ions, Copper, Chalcogenides, Neutrons, Diffraction
Danilkin, S. A., Avdeev, M., Sale, M., & Sakuma, T. (2012). Neutron scattering study of ionic diffusion in Cu–Se superionic compounds. Solid State Ionics, 225, 190-193 (Special Issue SI). doi:10.1016/j.ssi.2012.02.046