Modeling the charge-transfer resistance to determine the role of guar and activated polyacrylamide in copper electrodeposition.
dc.contributor.author | Fabian, CP | en_AU |
dc.contributor.author | Ridd, MJ | en_AU |
dc.contributor.author | Sheehan, ME | en_AU |
dc.contributor.author | Mandin, P | en_AU |
dc.date.accessioned | 2010-04-06 | en_AU |
dc.date.accessioned | 2010-04-30T05:08:04Z | en_AU |
dc.date.available | 2010-04-06 | en_AU |
dc.date.available | 2010-04-30T05:08:04Z | en_AU |
dc.date.issued | 2009-10 | en_AU |
dc.date.statistics | 2009-10 | en_AU |
dc.description.abstract | In this paper, we explore the effects of two organic additives (guar and a selectively hydrolyzed polyacrylamide) in the presence of chloride ions on copper electrodeposition using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) at a rotating cylinder electrode (RCE). This paper also demonstrates that the CV and EIS results are consistent and that the selectively hydrolyzed polyacrylamide, "activated polyacrylamide" (APAM), acts as a suppressor/inhibitor at the cathode/electrolyte interface, whereas guar does not. This paper presents an EIS measurement model for the effect of APAM + Cl- on a copper cathode. The EIS model was applied to data obtained at a potential of -470 mV vs a mercurous-mercuric sulfate reference electrode (MSE) at 45°C. A comparison between the effect of APAM + Cl- and guar + Cl- was conducted at -490 mV (vs MSE) at 45°C. APAM + Cl- was also investigated at -445 mV (vs MSE) at 65°C. EIS was used to determine the effect of APAM + Cl- or guar + Cl- aging on the charge-transfer resistance using the RCE. CV was used to determine their effect on the polarization of the electrode. The EIS and CV results are consistent. © 2009, Electrochemical Society Inc. | en_AU |
dc.identifier.citation | Fabian, C. P., Ridd, M. J., Sheehan, M. E., & Mandin, P. (2009). Modeling the charge-transfer resistance to determine the role of guar and activated polyacrylamide in copper electrodeposition. Journal of the Electrochemical Society, 156(10), D400-D407. doi:10.1149/1.3176879 | en_AU |
dc.identifier.govdoc | 1518 | en_AU |
dc.identifier.issn | 0013-4651 | en_AU |
dc.identifier.issue | 10 | en_AU |
dc.identifier.journaltitle | Journal of the Electrochemical Society | en_AU |
dc.identifier.pagination | D400-D407 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1149/1.3176879 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/3033 | en_AU |
dc.identifier.volume | 156 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Electrochemical Society | en_AU |
dc.subject | Electrodeposition | en_AU |
dc.subject | Copper | en_AU |
dc.subject | Chlorides | en_AU |
dc.subject | Charge exchange | en_AU |
dc.subject | Simulation | en_AU |
dc.subject | Voltametry | en_AU |
dc.title | Modeling the charge-transfer resistance to determine the role of guar and activated polyacrylamide in copper electrodeposition. | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1