Novel organic-inorganic hybrids with increased water retention for elevated temperature proton exchange membrane application

dc.contributor.authorMistry, MKen_AU
dc.contributor.authorChoudhury, NRen_AU
dc.contributor.authorDutta, NKen_AU
dc.contributor.authorKnott, RBen_AU
dc.contributor.authorShi, ZQen_AU
dc.contributor.authorHoldcroft, Sen_AU
dc.date.accessioned2009-10-01T06:40:55Zen_AU
dc.date.accessioned2010-04-30T05:07:15Zen_AU
dc.date.available2009-10-01T06:40:55Zen_AU
dc.date.available2010-04-30T05:07:15Zen_AU
dc.date.issued2008-11-11en_AU
dc.date.statistics2008-11-11en_AU
dc.description.abstractA new class of proton-conducting hybrid membranes have been developed using it combination of a solvent-directed infiltration method and sol-gel chemistry with a range of organofunctional silane and phosphate precursors. The phase-separated morphology of Nafion is used as a structure-directing template, which drives the inorganic component into the ionic Clusters of the Nafion membrane. The kinetics of the sol-gel reactions were monitored using spectroscopic techniques. Photoacoustic Fourier transform infrared spectroscopy (PA-FTIR) confirms formation of Si-O-Si and Si-O-P bridges in the hybrid membranes, indicating silicate and phosphosilicate structures. The presence of the silicate/phosphosilicate network in the hybrid membranes enhances their thermal stability, thermomechanical properties, water retention at elevated temperatures, and relaxation temperature T(c). Scanning electron microscopy (SEM) and small angle neutron scattering were used to determine the morphology and microstructure of these membranes. A structural model of the hybrids is proposed to describe the size and shape of the inorganic particles, which is consistent with the SEM observations. Proton conductivity measurements were made from 30 to 80 degrees C and at relative humidities ranging from 30% to 90%. The presence of inorganics in the polymer membrane has improved the water management in these new organic-inorganic hybrids at elevated temperatures above 100 degrees C, which is a key parameter when designing proton-ex change membranes for medium-temperature fuel cell application. © 2008, American Chemical Societyen_AU
dc.identifier.citationMistry, M. K., Choudhury, N. R., Dutta, N. K., Knott, R., Shi, Z. Q., & Holdcroft, S. (2008). Novel organic-inorganic hybrids with increased water retention for elevated temperature proton exchange membrane application. Chemistry of Materials, 20(21), 6857-6870. doi:10.1021/cm801374hen_AU
dc.identifier.govdoc1464en_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.issue21en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination6857-6870en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/cm801374hen_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/1890en_AU
dc.identifier.volume20en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectProton exchange membrane fuel cellsen_AU
dc.subjectHybridizationen_AU
dc.subjectSol-gel processen_AU
dc.subjectMagnetic resonanceen_AU
dc.subjectWateren_AU
dc.subjectProton conductivityen_AU
dc.titleNovel organic-inorganic hybrids with increased water retention for elevated temperature proton exchange membrane applicationen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description:
Collections