Dynamical transition in a large globular protein: macroscopic properties and glass transition

dc.contributor.authorKealley, CSen_AU
dc.contributor.authorSokolova, AVen_AU
dc.contributor.authorKearley, GJen_AU
dc.contributor.authorKemner, Een_AU
dc.contributor.authorRussina, Men_AU
dc.contributor.authorFaraone, Aen_AU
dc.contributor.authorHamilton, WAen_AU
dc.contributor.authorGilbert, EPen_AU
dc.date.accessioned2009-11-23en_AU
dc.date.accessioned2010-04-30T05:05:08Zen_AU
dc.date.available2009-11-23en_AU
dc.date.available2010-04-30T05:05:08Zen_AU
dc.date.issued2010-01en_AU
dc.date.statistics2010-01en_AU
dc.description.abstractHydrated soy-proteins display different macroscopic properties below and above approximately 25% moisture. This is relevant to the food industry in terms of processing and handling. Quasi-elastic neutron spectroscopy of a large globular soy-protein, glycinin, reveals that a similar moisture-content dependence exists for the microscopic dynamics as well. We find evidence of a transition analogous to those found in smaller proteins, when investigated as a function of temperature, at the so-called dynamical transition. In contrast, the glass transition seems to be unrelated. Small proteins are good model systems for the much larger proteins because the relaxation characteristics are rather similar despite the change in scale. For dry samples, which do not show the dynamical transition, the dynamics of the methyl group is probably the most important contribution to the QENS spectra, however a simple rotational model is not able to explain the data. Our results indicate that the dynamics that occurs above the transition temperature is unrelated to that at lower temperatures and that the transition is not simply related to the relaxation rate falling within the spectral window of the spectrometer. © 2010, Elsevier Ltd.en_AU
dc.identifier.citationKealley, C. S., Sokolova, A. V., Kearley, G. J., Kemner, E., Russina, M., & Faraone, A., Hamilton, W. A., & Gilbert, E. P. (2010). Dynamical transition in a large globular protein: macroscopic properties and glass transition. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1804(1), 34-40. doi:10.1016/j.bbapap.2009.06.027en_AU
dc.identifier.govdoc1335en_AU
dc.identifier.issn1570-9639en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleBiochimica et Biophysica Acta (BBA) - Proteins & Proteomicsen_AU
dc.identifier.pagination34-40en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.bbapap.2009.06.027en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/2433en_AU
dc.identifier.volume1804en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectMoistureen_AU
dc.subjectProteinsen_AU
dc.subjectTransformationsen_AU
dc.subjectFood industryen_AU
dc.subjectNeutron spectroscopyen_AU
dc.subjectDynamicsen_AU
dc.titleDynamical transition in a large globular protein: macroscopic properties and glass transitionen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description:
Collections