Silicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties

dc.contributor.authorCiampi, Sen_AU
dc.contributor.authorEggers, PKen_AU
dc.contributor.authorLe Saux, Gen_AU
dc.contributor.authorJames, Men_AU
dc.contributor.authorHarper, JBen_AU
dc.contributor.authorGooding, JJen_AU
dc.date.accessioned2009-06-16T03:24:29Zen_AU
dc.date.accessioned2010-04-30T05:03:48Zen_AU
dc.date.available2009-06-16T03:24:29Zen_AU
dc.date.available2010-04-30T05:03:48Zen_AU
dc.date.issued2009-02-17en_AU
dc.date.statistics2009-02-17en_AU
dc.description.abstractHere we report on the functionalization of alkyne-terminated alkyl monolayers on highly doped Si(100) using click" reactions to immobilize ferrocene derivatives. The reaction of hydrogen-terminated silicon surfaces with a diyne species was shown to afford very robust functional surfaces where the oxidation of the underlying substrate was negligible. Detailed characterization using X-ray photoelectron spectroscopy, X-ray reflectometry, and cyclic voltammetry demonstrated that the surface acetylenes had reacted in moderate yield to give surfaces exposing ferrocene moieties. Upon extensive exposure of the redox-active architecture to oxidative environments during preparative and characterization steps, no evidence of SiOx contaminants was shown for derivatized SAMs prepared from single-component 1,8-nonadiyne, fully acetylenylated, monolayers. An analysis of the redox behavior of the prepared Si(100) electrodes based on relevant parameters such as peak splitting and position and shape of the reduction/oxidation waves depicted a well-behaved redox architecture whose spectroscopic and electrochemical properties were not significantly altered even after prolonged cycling in aqueous media between -100 and 800 mV versus AglAgCl. The reported strategy represents an experimentally simple approach for the preparation of silicon-based electrodes where, in addition to close-to-ideal redox behavior, remarkable electrode stability can be achieved. Both the presence of a distal alkyne moiety and temperatures of formation above 100 degrees C were required to achieve this surface stabilization. © 2009, American Chemical Societyen_AU
dc.identifier.citationCiampi, S., Eggers, P. K., Le Saux, G., James, M., Harper, J. B., & Gooding, J. J. (2009). Silicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties. Langmuir, 25(4), 2530-2539. doi:10.1021/la803710den_AU
dc.identifier.govdoc1248en_AU
dc.identifier.issn0743-7463en_AU
dc.identifier.issue4en_AU
dc.identifier.journaltitleLangmuiren_AU
dc.identifier.pagination2530-2539en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/la803710den_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/1369en_AU
dc.identifier.volume25en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectSiliconen_AU
dc.subjectOxidationen_AU
dc.subjectAqueous solutionsen_AU
dc.subjectAcetyleneen_AU
dc.subjectFerroceneen_AU
dc.subjectElectrodesen_AU
dc.titleSilicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moietiesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description:
Collections