Structures of 6H perovskites Ba3CaSb2O9 and Ba3SrSb2O9 determined by synchrotron x-ray diffraction, neutron powder diffraction and ab initio calculations
dc.contributor.author | Rowda, B | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Lee, PL | en_AU |
dc.contributor.author | Henry, PF | en_AU |
dc.contributor.author | Ling, CD | en_AU |
dc.date.accessioned | 2008-04-21T01:12:47Z | en_AU |
dc.date.accessioned | 2010-04-30T05:03:37Z | en_AU |
dc.date.available | 2008-04-21T01:12:47Z | en_AU |
dc.date.available | 2010-04-30T05:03:37Z | en_AU |
dc.date.issued | 2008-04 | en_AU |
dc.date.statistics | 2008-04 | en_AU |
dc.description.abstract | The structures of the 6H perovskites Ba3 B 2+Sb5+ 2O9, B = Ca and Sr, have been solved and refined using synchrotron X-ray and neutron powder diffraction data. Ba3CaSb2O9 and Ba3SrSb2O9 have monoclinic C2/c and triclinic space-group symmetries, respectively, while Ba3MgSb2O9 has ideal hexagonal P63/mmc space-group symmetry. The symmetry-lowering distortions are a consequence of internal chemical pressure' owing to the increasing effective ionic radius of the alkaline-earth cation in the perovskite B site from Mg2+ (0.72 Å) to Ca2+ (1.00 Å) to Sr2+ (1.18 Å). Increasing the effective ionic radius further to Ba2+ (1.35 Å) leads to decomposition at room temperature. The driving force behind the transition from P63/mmc to C2/c is the need to alleviate underbonding of Ba2+ cations in the perovskite A site via octahedral rotations, while the transition from C2/c to is driven by the need to regularize the shape of the Sb2O9 face-sharing octahedral dimers. Ab initio geometry-optimization calculations were used to find a triclinic starting model for Ba3SrSb2O9. © 2008, International Union of Crystallography | en_AU |
dc.identifier.citation | Rowda, B., Avdeev, M., Lee, P. L., Henry, P. F., & Ling, C. D. (2008). Structures of 6H perovskites Ba3CaSb2O9 and Ba3SrSb2O9 determined by synchrotron x-ray diffraction, neutron powder diffraction and ab initio calculations. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 64(2), 154-159. doi:10.1107/S0108768108005041 | en_AU |
dc.identifier.govdoc | 1235 | en_AU |
dc.identifier.issn | 0108-7681 | en_AU |
dc.identifier.issue | 2 | en_AU |
dc.identifier.journaltitle | Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials | en_AU |
dc.identifier.pagination | 154-159 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1107/S0108768108005041 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/1087 | en_AU |
dc.identifier.volume | 64 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | International Union of Crystallography | en_AU |
dc.subject | Perovskites | en_AU |
dc.subject | Synchrotrons | en_AU |
dc.subject | Neutron diffraction | en_AU |
dc.subject | Symmetry | en_AU |
dc.subject | Ionic composition | en_AU |
dc.subject | Decomposition | en_AU |
dc.title | Structures of 6H perovskites Ba3CaSb2O9 and Ba3SrSb2O9 determined by synchrotron x-ray diffraction, neutron powder diffraction and ab initio calculations | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1