Repository logo


Comparative accumulation of Cd-109 and Se-75 from water and food by an estuarine fish (Tetractenos glaber)

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Few data are available on the comparative accumulation of metal(loid)s from water and food in estuarine/marine fish. Smooth toadfish (Tetractenos glaber), commonly found in estuaries in south-eastern Australia, were separately exposed to radio-labelled seawater (14 kBq L-1 of Cd-109 and 24 kBq L-1 of Se-75) and food (ghost shrimps; Trypaea australiensis: 875 Bq g(-1) Cd-109 and 1130 Bq g(-1) Se-75) for 25 days (uptake phase), followed by exposure to radionuclide-free water or food for 30 days (loss phase). Toadfish accumulated Cd-109 predominantly from water (85%) and Se-75 predominantly from food (62%), although the latter was lower than expected. For both the water and food exposures, Cd-109 was predominantly located in the gut lining (60-75%) at the end of the uptake phase, suggesting that the gut may be the primary pathway of Cd-109 uptake. This may be attributed to toadfish drinking large volumes of water to maintain osmoregulation. By the end of the loss phase, Cd-109 had predominantly shifted to the excretory organs - the liver (81%) in toadfish exposed to radio-labelled food, and in the liver, gills and kidney (82%) of toadfish exposed to radio-labelled water. In contrast, Se-75 was predominantly located in the excretory organs (gills, kidneys and liver; 66-76%) at the end of the uptake phase, irrespective of the exposure pathway, with minimal change in percentage distribution (76-83%) after the loss phase. This study emphasises the importance of differentiating accumulation pathways to better understand metal(loid) transfer dynamics and subsequent toxicity, in aquatic biota. © 2007, Elsevier Ltd.

Description

Citation

Alquezar, R., Markich, S. J., & Twining, J. R. (2008). Comparative accumulation of Cd-109 and Se-75 from water and food by an estuarine fish (Tetractenos glaber). Journal of Environmental Radioactivity, 99(1), 167-180. doi:10.1016/j.jenvrad.2007.07.012

Collections

Endorsement

Review

Supplemented By

Referenced By