Mixed conductivity and stability of CaFe2O4−δ

No Thumbnail Available
Date
2008-03
Journal Title
Journal ISSN
Volume Title
Publisher
Electrochemical Society
Abstract
The total conductivity of CaFe2O4-delta, studied in the oxygen partial pressure range from 10(-17) to 0.5 atm at 1023-1223 K, is predominantly p-type electronic under oxidizing conditions. The oxygen ion transference numbers determined by the steady-state oxygen permeation and faradaic efficiency measurements vary in the range of 0.2 to 7.2 x 10(-4) at 1123-1273 K, increasing with temperature. No evidence of any significant cationic contribution to the conductivity was found. The Mossbauer spectroscopy, thermogravimetry, and X-ray diffraction (XRD) showed that the orthorhombic lattice of calcium ferrite is essentially intolerant to the oxygen vacancy formation and to doping with lower-valence cations, such as Co and Ni. The oxygen nonstoichiometry (delta) is almost negligible, 0.0046-0.0059 at 973-1223 K and p(O-2) = 10(-5)-0.21 atm, providing a substantial dimensional stability of CaFe2O4-delta ceramics. The average linear thermal expansion coefficients, calculated from the controlled-atmosphere dilatometry and high-temperature XRD data, are (9.6-13.9) x 10(-6) K-1 in the oxygen pressure range from 10(-8) to 0.21 atm at 873-1373 K. Decreasing P(02) results in a modest lattice contraction and in the p-n transition indicated by the conductivity and Seebeck coefficient variations. The phase decomposition of CaFe2O4-delta occurs at oxygen chemical potentials between the low-p(O-2) stability limit of Ca2Fe2O5-delta brownmillerite and the hematite/magnetite boundary in binary Fe-O system. © 2008, Electrochemical Society Inc.
Description
Keywords
Thermal expansion, Transport, Ionic conductivity, Oxygen, Perovskites, Oxides, Ceramics
Citation
Kharton, V. V., Tsipis, E. V., Kolotygin, V. A., Avdeev, M., Viskup, A. P., Waerenborgh, J. C., & Frade, J. R. (2008). Mixed conductivity and stability of CaFe2O4-delta. Journal of the Electrochemical Society, 155(3), 13-20. doi:10.1149/1.2823458
Collections