Structural and vibrational properties of co nanoparticles formed by ion implantation

dc.contributor.authorSprouster, DJen_AU
dc.contributor.authorGiulian, Ren_AU
dc.contributor.authorAraujo, LLen_AU
dc.contributor.authorKluth, Pen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorCookson, DJen_AU
dc.contributor.authorForan, GJen_AU
dc.contributor.authorRidgway, MCen_AU
dc.date.accessioned2010-03-22T23:25:14Zen_AU
dc.date.accessioned2010-04-30T05:02:20Zen_AU
dc.date.available2010-03-22T23:25:14Zen_AU
dc.date.available2010-04-30T05:02:20Zen_AU
dc.date.issued2010-01-01en_AU
dc.date.statistics2010-01-01en_AU
dc.description.abstractWe report on the structural and vibrational properties of Co nanoparticles formed by ion implantation and thermal annealing in amorphous silica. The evolution of the nanoparticle size, phase, and structural parameters were determined as a function of the formation conditions using transmission electron microscopy, small-angle x-ray scattering, and x-ray absorption spectroscopy. The implantation fluence and annealing temperature governed the spherical nanoparticle size and phase. To determine the latter, x-ray absorption near-edge structure analysis was used to quantify the hexagonal close packed, face-centered cubic and oxide fractions. The structural properties were characterized by extended x-ray absorption fine structure spectroscopy (EXAFS) and finite-size effects were readily apparent. With a decrease in nanoparticle size, an increase in structural disorder and a decrease in both coordination number and bondlength were observed as consistent with the non-negligible surface-area-to-volume ratio characteristic of nanoparticles. The surface tension of Co nanoparticles calculated using a liquid drop model was more than twice that of bulk material. The size-dependent vibrational properties were probed with temperature-dependent EXAFS measurements. Using a correlated anharmonic Einstein model and thermodynamic perturbation theory, Einstein temperatures for both nanoparticles and bulk material were determined. Compared to bulk Co, the mean vibrational frequency of the smallest nanoparticles was reduced as attributed to a greater influence of loosely bonded, undercoordinated surface atoms relative to the effect of capillary pressure generated by surface curvature. © 2010, American Institute of Physicsen_AU
dc.identifier.citationSprouster, D. J., Giulian, R., Araujo, L. L., Kluth, P., Johannessen, B., Cookson, D. J., Foran, G. J., & Ridgway, M. C. (2009). Structural and vibrational properties of co nanoparticles formed by ion implantation. Journal of Applied Physics, 107(1), 10. doi:10.1063/1.3275052en_AU
dc.identifier.govdoc1143en_AU
dc.identifier.issn0021-8979en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleJournal of Applied Physicsen_AU
dc.identifier.pagination10en_AU
dc.identifier.urihttp://dx.doi.org/10.1063/1.3275052en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/2989en_AU
dc.identifier.volume107en_AU
dc.language.isoenen_AU
dc.publisherAmerican Institute of Physicsen_AU
dc.subjectIon implantationen_AU
dc.subjectPerturbation theoryen_AU
dc.subjectTransmission electron microscopyen_AU
dc.subjectVibrational statesen_AU
dc.subjectCobalten_AU
dc.subjectThermodynamicsen_AU
dc.titleStructural and vibrational properties of co nanoparticles formed by ion implantationen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description:
Collections