Alkaline hydrothermal kinetics in titanate nanostructure formation.

dc.contributor.authorMorgan, DLen_AU
dc.contributor.authorTriani, Gen_AU
dc.contributor.authorBlackford, MGen_AU
dc.contributor.authorRaftery, NAen_AU
dc.contributor.authorFrost, RLen_AU
dc.contributor.authorWaclawik, ERen_AU
dc.date.accessioned2011-03-03T05:45:09Zen_AU
dc.date.available2011-03-03T05:45:09Zen_AU
dc.date.issued2011-01en_AU
dc.date.statistics2011-01en_AU
dc.description.abstractIn this study, the mechanism of precursor dissolution and the influence of kinetics of dissolution on titanate nanotube formation were investigated. This comparative study explored the dissolution kinetics for the case of commercial titania powders, one composed of predominantly anatase (>95%) and the other rutile phase (>93%). These nanoparticle precursors were hydrothermally reacted in 9 mol L−1 NaOH at 160°C over a range of reaction times of between 2 and 32 h. The high surface area nanotube-form product was confirmed using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscopy. The concentration of nanotubes produced from the different precursors was established using Rietveld analysis with internal and external corundum standardization to calibrate the absolute concentrations of the samples. Interpretation of the dissolution process of the precursor materials indicated that the dissolution of anatase proceeds via a zero-order kinetic process, whereas rutile dissolution is through a second-order process. The TiO2 nanostructure formation process and mechanism of TiO2 precursor dissolution was confirmed by non-invasive dynamic light scattering measurements. Significant observations are that nanotube formation occurred over a broad range of hydrothermal treatment conditions and was strongly influenced by the order of precursor dissolution. © 2011, Springeren_AU
dc.identifier.citationMorgan, D. L., Triani, G., Blackford, M. G., Raftery, N. A., Frost, R. L., & Waclawik, E. R. (2011). Alkaline hydrothermal kinetics in titanate nanostructure formation. Journal of Materials Science, 46(2), 548-557. doi:10.1007/s10853-010-5016-0en_AU
dc.identifier.govdoc3257en_AU
dc.identifier.issn0022-2461en_AU
dc.identifier.issue2en_AU
dc.identifier.journaltitleJournal of Materials Scienceen_AU
dc.identifier.pagination548-557en_AU
dc.identifier.urihttp://dx.doi.org/10.1007/s10853-010-5016-0en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3104en_AU
dc.identifier.volume46en_AU
dc.language.isoenen_AU
dc.publisherSpringeren_AU
dc.subjectNanostructuresen_AU
dc.subjectTitanatesen_AU
dc.subjectKineticsen_AU
dc.subjectDissolutionen_AU
dc.subjectHydrothermal synthesisen_AU
dc.subjectPrecursoren_AU
dc.titleAlkaline hydrothermal kinetics in titanate nanostructure formation.en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections