Gas-liquid flows in medium and large vertical pipes.

dc.contributor.authorDuan, XYen_AU
dc.contributor.authorCheung, SCPen_AU
dc.contributor.authorYeoh, GHen_AU
dc.contributor.authorTu, JYen_AU
dc.contributor.authorKrepper, Een_AU
dc.contributor.authorLucas, Den_AU
dc.date.accessioned2011-02-21T05:02:57Zen_AU
dc.date.available2011-02-21T05:02:57Zen_AU
dc.date.issued2011-03-01en_AU
dc.date.statistics2011-03-01en_AU
dc.description.abstractGas-liquid bubbly flows with wide range of bubble sizes are commonly encountered in many industrial gas–liquid flow systems. To assess the performances of two population balance approaches – Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) models – in tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to validate predictions from both models against experimental data of Lucas et al. (2005) and Prasser et al. (2007) measured in the Forschungszentrum Dresden-Rossendorf FZD facility. These experiments have been strategically chosen because of flow conditions yielding opposite trend of bubble size evolution, which provided the means of carrying out a thorough examination of existing bubble coalescence and break-up kernels. In general, predictions of both models were in good agreement with experimental data. The encouraging results demonstrated the capability of both models in capturing the dynamical changes of bubbles size due to bubble interactions and the transition from “wall peak” to “core peak” gas volume fraction profiles caused by the presence of small and large bubbles. Predictions of the inhomogeneous MUSIG model appeared marginally superior to those of ABND model. Nevertheless, through the comparison of axial gas volume fraction and Sauter mean bubble diameter profiles, ABND model may be considered an alternative approach for industrial applications of gas–liquid flow systems. © 2011, Elsevier Ltd.en_AU
dc.identifier.citationDuan, X. Y., Cheung, S. C. P., Yeoh, G. H., Tu, J. Y., Krepper, E., & Lucas, D. (2011). Gas-liquid flows in medium and large vertical pipes. Chemical Engineering Science, 66(5), 872-883. doi:10.1016/j.ces.2010.11.031en_AU
dc.identifier.govdoc3216en_AU
dc.identifier.issn0009-2509en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleChemical Engineering Scienceen_AU
dc.identifier.pagination872-883en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.ces.2010.11.031en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3027en_AU
dc.identifier.volume66en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectBubblesen_AU
dc.subjectMultiphase flowen_AU
dc.subjectCoalescenceen_AU
dc.subjectBreakup reactionsen_AU
dc.subjectDensityen_AU
dc.subjectPipesen_AU
dc.titleGas-liquid flows in medium and large vertical pipes.en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections