Pore size and volume effects on the incorporation of polymer into macro- and mesoporous zirconium titanium oxide membranes

dc.contributor.authorDrisko, GLen_AU
dc.contributor.authorCao, Len_AU
dc.contributor.authorKimling, MCen_AU
dc.contributor.authorHarrisson, Sen_AU
dc.contributor.authorLuca, Ven_AU
dc.contributor.authorCaruso, RAen_AU
dc.date.accessioned2010-04-20T03:04:50Zen_AU
dc.date.accessioned2010-04-30T05:09:40Zen_AU
dc.date.available2010-04-20T03:04:50Zen_AU
dc.date.available2010-04-30T05:09:40Zen_AU
dc.date.issued2009-12en_AU
dc.date.statistics2009-12en_AU
dc.description.abstractMacro- and mesoporous hybrid materials have applications in the fields of drug delivery, catalysis, biosensing, and separations. The pore size requirements must be well-understood to maximize the performance (e.g., load capacity and accessibility) of such materials. Hybrid materials were prepared by coating five distinct macroporous commercial membranes with zirconium titanium oxide through sol−gel chemistry. Calcination of these templated materials produced oxide membranes which had a suite of macropore and mesopore architectures, pore volumes, and surface areas. These differences in physical properties were used to conduct a fundamental study on the relationship between the pore size and volume and the polymer incorporation. Metal oxide membranes were postsynthetically modified with poly(ethyleneimine) (PEI) ranging in molecular weight from 1300 to 1000000 Da (1.2−11 nm in hydrodynamic diameter). The incorporation of the polymer from a 9 wt % solution at pH 10 was highly dependent on the pore size and pore volume. As the surface area increased, loading capacity decreased, indicating that much of the increased internal surface, due to small pore diameters (≤8 nm), was inaccessible to the macromolecules. Exclusion of PEI from small mesopores was apparent even for the lowest molecular weight polymer. A high maximum loading of 1.25 mg m−2 of 600000−1000000 Da PEI was achieved in the metal oxide with the largest minimum mesopore diameter. Thus, mesopore diameter and pore volume must be considered when designing a mesoporous solid support. © 2009, American Chemical Societyen_AU
dc.identifier.citationDrisko, G. L., Cao, L., Kimling, M. C., Harrisson, S., Luca, V., & Caruso, R. A. (2009). Pore size and volume effects on the incorporation of polymer into macro- and mesoporous zirconium titanium oxide membranes. ACS Applied Materials & Interfaces, 1(12), 2893-2901.en_AU
dc.identifier.govdoc1623en_AU
dc.identifier.issn1944-8244en_AU
dc.identifier.issue12en_AU
dc.identifier.journaltitleACS Applied Materials & Interfacesen_AU
dc.identifier.pagination2893-2901en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/am9006098en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3244en_AU
dc.identifier.volume1en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectPore structureen_AU
dc.subjectZirconiumen_AU
dc.subjectHybridizationen_AU
dc.subjectTitaniumen_AU
dc.subjectComposite materialsen_AU
dc.subjectPolymersen_AU
dc.titlePore size and volume effects on the incorporation of polymer into macro- and mesoporous zirconium titanium oxide membranesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description:
Collections