X-ray mass attenuation coefficients and imaginary components of the atomic form factor of zinc over the energy range of 7.2-15.2 keV
dc.contributor.author | Rae, NA | en_AU |
dc.contributor.author | Chantler, CT | en_AU |
dc.contributor.author | Barnea, Z | en_AU |
dc.contributor.author | de Jonge, MD | en_AU |
dc.contributor.author | Tran, CQ | en_AU |
dc.contributor.author | Hester, JR | en_AU |
dc.date.accessioned | 2010-04-19T02:26:05Z | en_AU |
dc.date.accessioned | 2010-04-30T05:09:35Z | en_AU |
dc.date.available | 2010-04-19T02:26:05Z | en_AU |
dc.date.available | 2010-04-30T05:09:35Z | en_AU |
dc.date.issued | 2010-02 | en_AU |
dc.date.statistics | 2010-02 | en_AU |
dc.description.abstract | The x-ray mass attenuation coefficients of zinc are measured in a high-accuracy experiment between 7.2 and 15.2 keV with an absolute accuracy of 0.044% and 0.197%. This is the most accurate determination of any attenuation coefficient on a bending-magnet beamline and reduces the absolute uncertainty by a factor of 3 compared to earlier work by advances in integrated column density determination and the full-foil mapping technique described herein. We define a relative accuracy of 0.006%, which is not the same as either the precision or the absolute accuracy. Relative accuracy is the appropriate parameter for standard implementation of analysis of near-edge spectra. Values of the imaginary components f″ of the x-ray form factor of zinc are derived. Observed differences between the measured mass attenuation coefficients and various theoretical calculations reach a maximum of about 5% at the absorption edge and up to 2% further than 1 keV away from the edge. The measurements invite improvements in the theoretical calculations of mass attenuation coefficients of zinc. © 2010, American Physical Society | en_AU |
dc.identifier.citation | Rae, N. A., Chantler, C. T., Barnea, Z., de Jonge, M. D., Tran, C. Q., & Hester, J. R. (2010). X-ray mass attenuation coefficients and imaginary components of the atomic form factor of zinc over the energy range of 7.2-15.2 keV. Physical Review A, 81(2), 10. doi:10.1103/PhysRevA.81.022904 | en_AU |
dc.identifier.govdoc | 1617 | en_AU |
dc.identifier.issn | 1050-2947 | en_AU |
dc.identifier.issue | 2 | en_AU |
dc.identifier.journaltitle | Physical Review A | en_AU |
dc.identifier.pagination | 10 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1103/PhysRevA.81.022904 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/3198 | en_AU |
dc.identifier.volume | 81 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Physical Society | en_AU |
dc.subject | Attenuation | en_AU |
dc.subject | Zinc | en_AU |
dc.subject | Absorption | en_AU |
dc.subject | Accuracy | en_AU |
dc.subject | Theoretical data | en_AU |
dc.subject | Mapping | en_AU |
dc.title | X-ray mass attenuation coefficients and imaginary components of the atomic form factor of zinc over the energy range of 7.2-15.2 keV | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1