Effect of B4C addition to MnO2 in a cathode material for battery applications.

dc.contributor.authorMinakshi, Men_AU
dc.contributor.authorBlackford, MGen_AU
dc.contributor.authorThorogood, GJen_AU
dc.contributor.authorIssa, TBen_AU
dc.date.accessioned2010-04-12T23:57:56Zen_AU
dc.date.accessioned2010-04-30T05:09:31Zen_AU
dc.date.available2010-04-12T23:57:56Zen_AU
dc.date.available2010-04-30T05:09:31Zen_AU
dc.date.issued2010-01-01en_AU
dc.date.statistics2010-01-01en_AU
dc.description.abstractBoron carbide (B4C) added manganese dioxide (MnO2) used as a cathode material for a Zn–MnO2 battery using aqueous lithium hydroxide (LiOH) as the electrolyte is known to have higher discharge capacity but with a lower average discharge voltage than pure MnO2 (additive free). The performance is reversed when using potassium hydroxide (KOH) as the electrolyte. Herein, the MnO2 was mixed with 0, 5, 7 and 10 wt.% of boron carbide during the electrode preparation. The discharge performance of the Zn|LiOH|MnO2 battery was improved by the addition of 5–7 wt.% boron carbide in MnO2 cathode as compared with the pure MnO2. However, increasing the additive to 10 wt.% causes a decrease in the discharge capacity. The performance of the Zn|KOH|MnO2 battery was retarded by the boron carbide additive. Transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy analysis (EDS) results show evidence of crystalline MnO2 particles during discharging in LiOH electrolyte, whereas, manganese oxide particles with different oxygen and manganese counts leading to mixture of phases is observed for KOH electrolyte which is in agreement with X-ray diffraction (XRD) data. The enhanced discharge capacity indicates that boron atoms promote lithium intercalation during the electrochemical process and improved the performance of the Zn|LiOH|MnO2 battery. This observed improvement may be a consequence of B4C suppressing the formation of undesirable Mn(III) phases, which in turn leads to enhanced lithium intercalation. Too much boron carbide hinders the charge carrier which inhibits the discharge capacity. © 2009, Elsevier Ltd.en_AU
dc.identifier.citationMinakshi, M., Blackford, M. G., Thorogood, G. J., & Issa, T. B. (2010). Effect of B4C addition to MnO2 in a cathode material for battery applications. Electrochimica Acta, 55(3), 1028-1033. doi:10.1016/j.electacta.2009.09.062en_AU
dc.identifier.govdoc1613en_AU
dc.identifier.issn0013-4686en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleElectrochimica Actaen_AU
dc.identifier.pagination1028-1033en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.electacta.2009.09.062en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3152en_AU
dc.identifier.volume55en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectBoron carbidesen_AU
dc.subjectManganeseen_AU
dc.subjectCathodesen_AU
dc.subjectLithium hydroxidesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectTransmission electron microscopyen_AU
dc.titleEffect of B4C addition to MnO2 in a cathode material for battery applications.en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description:
Collections