Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351

dc.contributor.authorLiljedahl, CDMen_AU
dc.contributor.authorBrouard, Jen_AU
dc.contributor.authorZanellato, Oen_AU
dc.contributor.authorLin, Jen_AU
dc.contributor.authorTan, MLen_AU
dc.contributor.authorGanguly, Sen_AU
dc.contributor.authorIrving, PEen_AU
dc.contributor.authorFitzpatrick, MEen_AU
dc.contributor.authorZhang, Xen_AU
dc.contributor.authorEdwards, Len_AU
dc.date.accessioned2010-04-07en_AU
dc.date.accessioned2010-04-30T05:09:15Zen_AU
dc.date.available2010-04-07en_AU
dc.date.available2010-04-30T05:09:15Zen_AU
dc.date.issued2009-06en_AU
dc.date.statistics2009-06en_AU
dc.description.abstractThe interaction between residual stress and fatigue crack growth rate has been investigated in middle tension and compact tension specimens machined from a variable polarity plasma arc welded aluminium alloy 2024-T351 plate. The specimens were tested at three levels of applied constant stress intensity factor range. Crack closure was continuously monitored using an eddy current transducer and the residual stresses were measured with neutron diffraction. The effect of the residual stresses on the fatigue crack behaviour was modelled for both specimen geometries using two approaches: a crack closure approach where the effective stress intensity factor was computed; and a residual stress approach where the effect of the residual stresses on the stress ratio was considered. Good correlation between the experimental results and the predictions were found for the effective stress intensity factor approach at a high stress intensity factor range whereas the residual stress approach yielded good predictions at low and moderate stress intensity factor ranges. In particular, the residual stresses accelerated the fatigue crack growth rate in the middle tension specimen whereas they decelerated the growth rate in the compact tension sample, demonstrating the importance of accurately evaluating the residual stresses in welded specimens which will be used to produce damage tolerance design data. © 2009, Elsevier Ltd.en_AU
dc.identifier.citationLiljedahl, C. D. M., Brouard, J., Zanellato, O., Lin, J., Tan, M. L., Ganguly, S., Irving, P. E., Fitzpatrick, M. E., Zhang, X., & Edwards, L. (2009). Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351. International Journal of Fatigue, 31(6), 1081-1088. doi:10.1016/j.ijfatigue.2008.05.008en_AU
dc.identifier.govdoc1596en_AU
dc.identifier.issn0142-1123en_AU
dc.identifier.issue6en_AU
dc.identifier.journaltitleInternational Journal of Fatigueen_AU
dc.identifier.pagination1081-1088en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijfatigue.2008.05.008en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3073en_AU
dc.identifier.volume31en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectResidual stressesen_AU
dc.subjectCrack propagationen_AU
dc.subjectFatigueen_AU
dc.subjectToleranceen_AU
dc.subjectDamageen_AU
dc.subjectAluminium alloysen_AU
dc.titleWeld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description:
Collections